ECS1 and ECS2 suppress polyspermy and the formation of haploid plants by promoting double fertilization
Abstract
The current pace of crop plant optimization is insufficient to meet future demands and there is an urgent need for novel breeding strategies. It was previously shown that plants tolerate the generation of triparental polyspermy-derived plants and that polyspermy can bypass hybridization barriers. Polyspermy thus has the potential to harness previously incompatible climate adapted wild varieties for plant breeding. However, factors that influence polyspermy frequencies were not previously known. The endopeptidases ECS1 and ECS2 have been reported to prevent the attraction of supernumerary pollen tubes by cleaving the pollen tube attractant LURE1. Here we show that these genes have an earlier function that is manifested by incomplete double fertilization in plants defective for both genes. In addition to supernumerary pollen tube attraction, ecs1 ecs2 mutants exhibit a delay in synergid disintegration, are susceptible to heterofertilization, and segregate haploid plants that lack a paternal genome contribution. Our results thus uncover ECS1 and ECS2 as the first female factors triggering the induction of maternal haploids. Capitalizing on a high-throughput polyspermy assay, we in addition show that the double mutant exhibits a three-fold increase in polyspermy frequencies. As both haploid induction and polyspermy are valuable breeding aims, our results open new avenues for accelerated generation of climate adapted cultivars.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file.
Article and author information
Author details
Funding
European Research Council (646644)
- Rita Groß-Hardt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Mao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,172
- views
-
- 279
- downloads
-
- 5
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.
-
- Developmental Biology
New research shows that the neural circuit responsible for stabilising gaze can develop in the absence of motor neurons, contrary to a long-standing model in the field.