ECS1 and ECS2 suppress polyspermy and the formation of haploid plants by promoting double fertilization

Abstract

The current pace of crop plant optimization is insufficient to meet future demands and there is an urgent need for novel breeding strategies. It was previously shown that plants tolerate the generation of triparental polyspermy-derived plants and that polyspermy can bypass hybridization barriers. Polyspermy thus has the potential to harness previously incompatible climate adapted wild varieties for plant breeding. However, factors that influence polyspermy frequencies were not previously known. The endopeptidases ECS1 and ECS2 have been reported to prevent the attraction of supernumerary pollen tubes by cleaving the pollen tube attractant LURE1. Here we show that these genes have an earlier function that is manifested by incomplete double fertilization in plants defective for both genes. In addition to supernumerary pollen tube attraction, ecs1 ecs2 mutants exhibit a delay in synergid disintegration, are susceptible to heterofertilization, and segregate haploid plants that lack a paternal genome contribution. Our results thus uncover ECS1 and ECS2 as the first female factors triggering the induction of maternal haploids. Capitalizing on a high-throughput polyspermy assay, we in addition show that the double mutant exhibits a three-fold increase in polyspermy frequencies. As both haploid induction and polyspermy are valuable breeding aims, our results open new avenues for accelerated generation of climate adapted cultivars.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Yanbo Mao

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5520-8202
  2. Thomas Nakel

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9033-5987
  3. Isil Erbasol Serbes

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7854-1243
  4. Saurabh Joshi

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4354-6762
  5. Dawit Girma Tekleyohans

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7383-5971
  6. Thomas Baum

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Rita Groß-Hardt

    Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
    For correspondence
    gross-hardt@uni-bremen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1998-0507

Funding

European Research Council (646644)

  • Rita Groß-Hardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hao Yu, National University of Singapore & Temasek Life Sciences Laboratory, Singapore

Version history

  1. Preprint posted: January 22, 2022 (view preprint)
  2. Received: December 28, 2022
  3. Accepted: July 24, 2023
  4. Accepted Manuscript published: July 25, 2023 (version 1)
  5. Version of Record published: August 11, 2023 (version 2)

Copyright

© 2023, Mao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 834
    views
  • 222
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yanbo Mao
  2. Thomas Nakel
  3. Isil Erbasol Serbes
  4. Saurabh Joshi
  5. Dawit Girma Tekleyohans
  6. Thomas Baum
  7. Rita Groß-Hardt
(2023)
ECS1 and ECS2 suppress polyspermy and the formation of haploid plants by promoting double fertilization
eLife 12:e85832.
https://doi.org/10.7554/eLife.85832

Share this article

https://doi.org/10.7554/eLife.85832

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.