Oxytocin administration enhances pleasantness and neural responses to gentle stroking but not moderate pressure social touch by increasing peripheral concentrations

  1. Yuanshu Chen
  2. Haochen Zou
  3. Xin Hou
  4. Chuimei Lan
  5. Jing Wang
  6. Yanan Qing
  7. Wangjun Chen
  8. Shuxia Yao  Is a corresponding author
  9. Keith M Kendrick  Is a corresponding author
  1. University of Electronic Science and Technology of China, China
  2. Chongqing Normal University, China
  3. Sichuan University, China

Abstract

Background: Social touch constitutes a key component of human social relationships although in some conditions with social dysfunction, such as autism, it can be perceived as unpleasant. We have previously shown that intranasal administration of oxytocin facilitates the pleasantness of social touch and activation of brain reward and social processing regions, although it is unclear if it influences responses to gentle stroking touch mediated by cutaneous C-touch fibers or pressure touch mediated by other types of fibers. Additionally, it is unclear whether endogenous oxytocin acts via direct entry into the brain or by increased peripheral blood concentrations.

Methods: In a randomized controlled design, we compared effects of intranasal (direct entry into the brain and increased peripheral concentrations) and oral (only peripheral increases) oxytocin on behavioral and neural responses to social touch targeting C-touch (gentle-stroking) or other (medium pressure without stroking) cutaneous receptors.

Results: Although both types of touch were perceived as pleasant, intranasal and oral oxytocin equivalently enhanced pleasantness ratings and responses of reward, orbitofrontal cortex, and social processing, superior temporal sulcus, regions only to gentle-stroking not medium pressure touch. Furthermore, increased blood oxytocin concentrations predicted the pleasantness of gentle stroking touch. The specificity of neural effects of oxytocin on C-touch targeted gentle stroking touch were confirmed by time-course extraction and classification analysis.

Conclusions: Increased peripheral concentrations of oxytocin primarily modulate its behavioral and neural responses to gentle social touch mediated by C-touch fibers. Findings have potential implications for using oxytocin therapeutically in conditions where social touch is unpleasant.

Funding: Key Technological Projects of Guangdong Province grant 2018B030335001.

Clinical trial number: NCT05265806.

Data availability

Individual data is plotted in Figure 2, 4 and 5. The group-level statistics are plotted in Figure 2, 3 and 6. The source data for Figure 2-6 of this study is available on Open Science Framework (https://osf.io/cykru/). The code for the condition decoding analysis (Figure 5 and Figure 5-figure supplement 1) was initially from Emberson et al (2017) (https://teammcpa.github.io/EmbersonZinszerMCPA/) and revised for group classification analysis.

The following data sets were generated
    1. Yuanshu Chen
    2. Keith Kendrick
    (2023) Effects of oxytocin on social touch
    Open Science Framework, doi:10.17605/OSF.IO/CYKRU.

Article and author information

Author details

  1. Yuanshu Chen

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8500-7647
  2. Haochen Zou

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xin Hou

    School of Educational Sciences, Chongqing Normal University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chuimei Lan

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Wang

    West China School of Pharmacy, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yanan Qing

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wangjun Chen

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shuxia Yao

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    For correspondence
    yaoshuxia@uestc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Keith M Kendrick

    Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
    For correspondence
    k.kendrick.uestc@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0371-5904

Funding

Key Technological Projects of Guangdong Province (2018B030335001)

  • Keith M Kendrick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave written informed consent prior to any study procedures. All experimental procedures were in accordance with the latest revision of the declaration of Helsinki and approved by the local ethics committee of the University of Electronic Science and Technology of China.

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,226
    views
  • 195
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuanshu Chen
  2. Haochen Zou
  3. Xin Hou
  4. Chuimei Lan
  5. Jing Wang
  6. Yanan Qing
  7. Wangjun Chen
  8. Shuxia Yao
  9. Keith M Kendrick
(2023)
Oxytocin administration enhances pleasantness and neural responses to gentle stroking but not moderate pressure social touch by increasing peripheral concentrations
eLife 12:e85847.
https://doi.org/10.7554/eLife.85847

Share this article

https://doi.org/10.7554/eLife.85847

Further reading

    1. Medicine
    Yao Li, Hui Xin ... Wei Zhang
    Research Article

    Estrogen significantly impacts women’s health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce. Therefore, an ovariectomized rat model was used to simulate postmenopausal conditions. Estrogen levels, blood pressure, and aortic tissue metabolomics were analyzed. Animal models were divided into Sham, OVX, and OVX +E groups. Serum estrogen levels, blood pressure measurements, and aortic tissue metabolomics analyses were performed using radioimmunoassay, UHPLC-Q-TOF, and bioinformatics techniques. Based on the above research content, we successfully established a correlation between low estrogen levels and postmenopausal hypertension in rats. Notable differences in blood pressure parameters and aortic tissue metabolites were observed across the experimental groups. Specifically, metabolites that were differentially expressed, particularly L-alpha-aminobutyric acid (L-AABA), showed potential as a biomarker for postmenopausal hypertension, potentially exerting a protective function through macrophage activation and vascular remodeling. Enrichment analysis revealed alterations in sugar metabolism pathways, such as the Warburg effect and glycolysis, indicating their involvement in postmenopausal hypertension. Overall, this current research provides insights into the metabolic changes associated with postmenopausal hypertension, highlighting the role of L-AABA and sugar metabolism reprogramming in aortic tissue. The findings suggest a potential link between low estrogen levels, macrophage function, and vascular remodeling in the pathogenesis of postmenopausal hypertension. Further investigations are needed to validate these findings and explore their clinical implications for postmenopausal women.

    1. Medicine
    2. Neuroscience
    Gansheng Tan, Anna L Huguenard ... Eric C Leuthardt
    Research Article

    Background:

    Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population. Therefore, this study assessed the impact of both acute and repetitive taVNS on cardiovascular function.

    Methods:

    In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram readings and vital signs. We compared long-term changes in heart rate, heart rate variability (HRV), QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored acute cardiovascular biomarkers in patients exhibiting clinical improvement.

    Results:

    We found that repetitive taVNS did not significantly alter heart rate, QT interval, blood pressure, or intracranial pressure (ICP). However, repetitive taVNS increased overall HRV and parasympathetic activity compared to the sham treatment. The increase in parasympathetic activity was most pronounced from 2 to 4 days after initial treatment (Cohen’s d = 0.50). Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, ICP, or HRV. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than one point in their modified Rankin Score at the time of discharge.

    Conclusions:

    Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

    Funding:

    The American Association of Neurological Surgeons (ALH), The Aneurysm and AVM Foundation (ALH), The National Institutes of Health R01-EB026439, P41-EB018783, U24-NS109103, R21-NS128307 (ECL, PB), McDonnell Center for Systems Neuroscience (ECL, PB), and Fondazione Neurone (PB).

    Clinical trial number:

    NCT04557618.