Diversity and evolution of cerebellar folding in mammals

  1. Katja Heuer  Is a corresponding author
  2. Nicolas Traut
  3. Alexandra Allison de Sousa
  4. Sofie Louise Valk
  5. Julien Clavel
  6. Roberto Toro  Is a corresponding author
  1. Institut Pasteur, Falkland Islands (Malvinas)
  2. Institut Pasteur, France
  3. Bath Spa University, United Kingdom
  4. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  5. Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, France

Abstract

The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.

Data availability

All data analysed during this study is openly available at https://microdraw.pasteur.fr/project/brainmuseum-cb. Code for reproducing our analyses and our figures is openly available at https://github.com/neuroanatomy/comp-cb-folding

The following data sets were generated

Article and author information

Author details

  1. Katja Heuer

    Institut Pasteur, France, Falkland Islands (Malvinas)
    For correspondence
    katjaqheuer@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7237-0196
  2. Nicolas Traut

    Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra Allison de Sousa

    Bath Spa University, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sofie Louise Valk

    Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  5. Julien Clavel

    Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto Toro

    Institut Pasteur, Paris, France
    For correspondence
    rto@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6671-858X

Funding

European Commission (101033485)

  • Katja Heuer

Agence Nationale de la Recherche (ANR-19-DATA-0025)

  • Katja Heuer
  • Nicolas Traut
  • Roberto Toro

Agence Nationale de la Recherche (ANR-21-CE45-0016)

  • Katja Heuer
  • Nicolas Traut
  • Roberto Toro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jessica Dubois, Inserm Unité NeuroDiderot, Université Paris Cité, France

Ethics

Human subjects: The human dataset used has been made openly available through the BigBrain project.

Version history

  1. Preprint posted: December 30, 2022 (view preprint)
  2. Received: January 2, 2023
  3. Accepted: September 22, 2023
  4. Accepted Manuscript published: September 22, 2023 (version 1)
  5. Version of Record published: October 31, 2023 (version 2)

Copyright

© 2023, Heuer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,727
    views
  • 427
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katja Heuer
  2. Nicolas Traut
  3. Alexandra Allison de Sousa
  4. Sofie Louise Valk
  5. Julien Clavel
  6. Roberto Toro
(2023)
Diversity and evolution of cerebellar folding in mammals
eLife 12:e85907.
https://doi.org/10.7554/eLife.85907

Share this article

https://doi.org/10.7554/eLife.85907

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.