The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts

  1. Han Nim Lee
  2. Jenu Chacko
  3. Ariadna Gonzalez Solís
  4. Kuo-En Chen
  5. Jessica AS Barros
  6. Santiago Signorelli
  7. A Harvey Millar
  8. Richard David Vierstra
  9. Kevin W Eliceiri
  10. Marisa S Otegui  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Washington University in St. Louis, United States
  3. Universidad de la República, Uruguay
  4. University of Western Australia, Australia

Abstract

The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD039183. All other data generated or analyzed during this study are included in the manuscript and supporting file

The following data sets were generated

Article and author information

Author details

  1. Han Nim Lee

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0429-6297
  2. Jenu Chacko

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6676-0358
  3. Ariadna Gonzalez Solís

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kuo-En Chen

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jessica AS Barros

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Santiago Signorelli

    Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  7. A Harvey Millar

    School of Molecular Sciences, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard David Vierstra

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0210-3516
  9. Kevin W Eliceiri

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8678-670X
  10. Marisa S Otegui

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    For correspondence
    otegui@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4699-6950

Funding

National Science Foundation (IOS-1840687)

  • Marisa S Otegui

U.S. Department of Energy (DE-SC0019013)

  • Marisa S Otegui

National Institutes of Health (1S10 OD026769-01)

  • Marisa S Otegui

National Institutes of Health (R01-GM124452)

  • Richard David Vierstra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yoselin Benitez-Alfonso, University of Leeds, United Kingdom

Version history

  1. Received: January 8, 2023
  2. Preprint posted: January 28, 2023 (view preprint)
  3. Accepted: April 17, 2023
  4. Accepted Manuscript published: April 18, 2023 (version 1)
  5. Version of Record published: May 3, 2023 (version 2)

Copyright

© 2023, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    views
  • 402
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Han Nim Lee
  2. Jenu Chacko
  3. Ariadna Gonzalez Solís
  4. Kuo-En Chen
  5. Jessica AS Barros
  6. Santiago Signorelli
  7. A Harvey Millar
  8. Richard David Vierstra
  9. Kevin W Eliceiri
  10. Marisa S Otegui
(2023)
The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts
eLife 12:e86030.
https://doi.org/10.7554/eLife.86030

Share this article

https://doi.org/10.7554/eLife.86030

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.