The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts

  1. Han Nim Lee
  2. Jenu Chacko
  3. Ariadna Gonzalez Solís
  4. Kuo-En Chen
  5. Jessica AS Barros
  6. Santiago Signorelli
  7. A Harvey Millar
  8. Richard David Vierstra
  9. Kevin W Eliceiri
  10. Marisa S Otegui  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Washington University in St. Louis, United States
  3. Universidad de la República, Uruguay
  4. University of Western Australia, Australia

Abstract

The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD039183. All other data generated or analyzed during this study are included in the manuscript and supporting file

The following data sets were generated

Article and author information

Author details

  1. Han Nim Lee

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0429-6297
  2. Jenu Chacko

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6676-0358
  3. Ariadna Gonzalez Solís

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kuo-En Chen

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jessica AS Barros

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Santiago Signorelli

    Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
    Competing interests
    The authors declare that no competing interests exist.
  7. A Harvey Millar

    School of Molecular Sciences, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard David Vierstra

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0210-3516
  9. Kevin W Eliceiri

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8678-670X
  10. Marisa S Otegui

    Department of Botany, University of Wisconsin-Madison, Madison, United States
    For correspondence
    otegui@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4699-6950

Funding

National Science Foundation (IOS-1840687)

  • Marisa S Otegui

U.S. Department of Energy (DE-SC0019013)

  • Marisa S Otegui

National Institutes of Health (1S10 OD026769-01)

  • Marisa S Otegui

National Institutes of Health (R01-GM124452)

  • Richard David Vierstra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,222
    views
  • 521
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Han Nim Lee
  2. Jenu Chacko
  3. Ariadna Gonzalez Solís
  4. Kuo-En Chen
  5. Jessica AS Barros
  6. Santiago Signorelli
  7. A Harvey Millar
  8. Richard David Vierstra
  9. Kevin W Eliceiri
  10. Marisa S Otegui
(2023)
The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts
eLife 12:e86030.
https://doi.org/10.7554/eLife.86030

Share this article

https://doi.org/10.7554/eLife.86030

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.