Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism

  1. Jin Liu  Is a corresponding author
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon  Is a corresponding author
  1. Stanford University, United States
  2. Santa Clara University, United States
  3. Rutgers, The State University of New Jersey, United States

Abstract

Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.

Data availability

The training sets have been provided in Supplementary Materials. All data that support the findings of this study will be available through the NIHM Data Archive (NDA)

Article and author information

Author details

  1. Jin Liu

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    jinliu5@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4343-2623
  2. Hyesang Chang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2231-1112
  3. Daniel Arthur Abrams

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1255-1200
  4. Julia Boram Kang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chen Lang

    Department of Psychology, Santa Clara University, Santa Clara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Miriam Rosenberg-Lee

    Department of Psychology, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vinod Menon

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    menon@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (HD059205)

  • Vinod Menon

National Institutes of Health (MH084164)

  • Vinod Menon

National Institutes of Health (HD094623)

  • Vinod Menon

Stanford Maternal and Child Health Research Institute

  • Jin Liu

Stanford Maternal and Child Health Research Institute

  • Hyesang Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The informed written consent was obtained from the legal guardian of each child and all study protocols were approved by the Stanford University Review Board (IRB-11849). All participants were volunteers and were treated in accordance with the American Psychological Association 'Ethical Principles of Psychologists and Code of Conduct'.

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,462
    views
  • 243
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Liu
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon
(2023)
Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism
eLife 12:e86035.
https://doi.org/10.7554/eLife.86035

Share this article

https://doi.org/10.7554/eLife.86035

Further reading

    1. Neuroscience
    Kiichi Watanabe, Hui Chiu, David J Anderson
    Tools and Resources

    Monitoring neuronal activity at single-cell resolution in freely moving Drosophila engaged in social behaviors is challenging because of their small size and lack of transparency. Extant methods, such as Flyception, are highly invasive. Whole-brain calcium imaging in head-fixed, walking flies is feasible but the animals cannot perform the consummatory phases of social behaviors like aggression or mating under these conditions. This has left open the fundamental question of whether neurons identified as functionally important for such behaviors using loss- or gain-of-function screens are actually active during the natural performance of such behaviors, and if so during which phase(s). Here, we perform brain-wide mapping of active cells expressing the Immediate Early Gene hr38 using a high-sensitivity/low background fluorescence in situ hybridization (FISH) amplification method called HCR-3.0. Using double-labeling for hr38 mRNA and for GFP, we describe the activity of several classes of aggression-promoting neurons during courtship and aggression, including P1a cells, an intensively studied population of male-specific interneurons. Using HI-FISH in combination with optogenetic activation of aggression-promoting neurons (opto-HI-FISH), we identify candidate downstream functional targets of these cells in a brain-wide, unbiased manner. Finally, we compare the activity of P1a neurons during sequential performance of courtship and aggression, using intronic vs. exonic hr38 probes to differentiate newly synthesized nuclear transcripts from cytoplasmic transcripts synthesized at an earlier time. These data provide evidence suggesting that different subsets of P1a neurons may be active during courtship vs. aggression. HI-FISH and associated methods may help to fill an important lacuna in the armamentarium of tools for neural circuit analysis in Drosophila.

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.