Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism

  1. Jin Liu  Is a corresponding author
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon  Is a corresponding author
  1. Stanford University, United States
  2. Santa Clara University, United States
  3. Rutgers, The State University of New Jersey, United States

Abstract

Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.

Data availability

The training sets have been provided in Supplementary Materials. All data that support the findings of this study will be available through the NIHM Data Archive (NDA)

Article and author information

Author details

  1. Jin Liu

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    jinliu5@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4343-2623
  2. Hyesang Chang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2231-1112
  3. Daniel Arthur Abrams

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1255-1200
  4. Julia Boram Kang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chen Lang

    Department of Psychology, Santa Clara University, Santa Clara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Miriam Rosenberg-Lee

    Department of Psychology, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vinod Menon

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    menon@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (HD059205)

  • Vinod Menon

National Institutes of Health (MH084164)

  • Vinod Menon

National Institutes of Health (HD094623)

  • Vinod Menon

Stanford Maternal and Child Health Research Institute

  • Jin Liu

Stanford Maternal and Child Health Research Institute

  • Hyesang Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The informed written consent was obtained from the legal guardian of each child and all study protocols were approved by the Stanford University Review Board (IRB-11849). All participants were volunteers and were treated in accordance with the American Psychological Association 'Ethical Principles of Psychologists and Code of Conduct'.

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,577
    views
  • 252
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Liu
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon
(2023)
Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism
eLife 12:e86035.
https://doi.org/10.7554/eLife.86035

Share this article

https://doi.org/10.7554/eLife.86035

Further reading

    1. Neuroscience
    Magdalena Solyga, Georg B Keller
    Research Article

    Our movements result in predictable sensory feedback that is often multimodal. Based on deviations between predictions and actual sensory input, primary sensory areas of cortex have been shown to compute sensorimotor prediction errors. How prediction errors in one sensory modality influence the computation of prediction errors in another modality is still unclear. To investigate multimodal prediction errors in mouse auditory cortex, we used a virtual environment to experimentally couple running to both self-generated auditory and visual feedback. Using two-photon microscopy, we first characterized responses of layer 2/3 (L2/3) neurons to sounds, visual stimuli, and running onsets and found responses to all three stimuli. Probing responses evoked by audiomotor (AM) mismatches, we found that they closely resemble visuomotor (VM) mismatch responses in visual cortex (V1). Finally, testing for cross modal influence on AM mismatch responses by coupling both sound amplitude and visual flow speed to the speed of running, we found that AM mismatch responses were amplified when paired with concurrent VM mismatches. Our results demonstrate that multimodal and non-hierarchical interactions shape prediction error responses in cortical L2/3.

    1. Neuroscience
    Gyeong Hee Pyeon, Hyewon Cho ... Yong Sang Jo
    Research Article Updated

    Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.