Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism

  1. Jin Liu  Is a corresponding author
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon  Is a corresponding author
  1. Stanford University, United States
  2. Santa Clara University, United States
  3. Rutgers, The State University of New Jersey, United States

Abstract

Children with autism spectrum disorders (ASD) often display atypical learning styles, however little is known regarding learning-related brain plasticity and its relation to clinical phenotypic features. Here, we investigate cognitive learning and neural plasticity using functional brain imaging and a novel numerical problem-solving training protocol. Children with ASD showed comparable learning relative to typically developing children but were less likely to shift from rule-based to memory-based strategy. While learning gains in typically developing children were associated with greater plasticity of neural representations in the medial temporal lobe and intraparietal sulcus, learning in children with ASD was associated with more stable neural representations. Crucially, the relation between learning and plasticity of neural representations was moderated by insistence on sameness, a core phenotypic feature of ASD. Our study uncovers atypical cognitive and neural mechanisms underlying learning in children with ASD, and informs pedagogical strategies for nurturing cognitive abilities in childhood autism.

Data availability

The training sets have been provided in Supplementary Materials. All data that support the findings of this study will be available through the NIHM Data Archive (NDA)

Article and author information

Author details

  1. Jin Liu

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    jinliu5@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4343-2623
  2. Hyesang Chang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2231-1112
  3. Daniel Arthur Abrams

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1255-1200
  4. Julia Boram Kang

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chen Lang

    Department of Psychology, Santa Clara University, Santa Clara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Miriam Rosenberg-Lee

    Department of Psychology, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vinod Menon

    Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
    For correspondence
    menon@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (HD059205)

  • Vinod Menon

National Institutes of Health (MH084164)

  • Vinod Menon

National Institutes of Health (HD094623)

  • Vinod Menon

Stanford Maternal and Child Health Research Institute

  • Jin Liu

Stanford Maternal and Child Health Research Institute

  • Hyesang Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The informed written consent was obtained from the legal guardian of each child and all study protocols were approved by the Stanford University Review Board (IRB-11849). All participants were volunteers and were treated in accordance with the American Psychological Association 'Ethical Principles of Psychologists and Code of Conduct'.

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,297
    views
  • 219
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Liu
  2. Hyesang Chang
  3. Daniel Arthur Abrams
  4. Julia Boram Kang
  5. Chen Lang
  6. Miriam Rosenberg-Lee
  7. Vinod Menon
(2023)
Atypical cognitive training-induced learning and brain plasticity and their relation to insistence on sameness in children with autism
eLife 12:e86035.
https://doi.org/10.7554/eLife.86035

Share this article

https://doi.org/10.7554/eLife.86035

Further reading

    1. Developmental Biology
    2. Neuroscience
    Changtian Ye, Ryan Ho ... James Q Zheng
    Research Article

    Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.

    1. Neuroscience
    Iustin V Tabarean
    Research Article

    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4–5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.