Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite: parasite communication

  1. Nehuén Salas
  2. Manuela Blasco Pedreros
  3. Tuanne dos Santos Melo
  4. Vanina G Maguire
  5. Jihui Sha
  6. James A Wohlschlegel
  7. Antonio Pereira-Neves
  8. Natalia de Miguel  Is a corresponding author
  1. Instituto Tecnológico de Chascomús, Argentina
  2. Instituto Aggeu Magalhães, Brazil
  3. Estación Experimental Agropecuaria, Argentina
  4. University of California, Los Angeles, United States

Abstract

Trichomonas vaginalis, the etiologic agent of the most common non-viral sexually transmitted infection worldwide, colonizes the human urogenital tract where it remains extracellular and adheres to epithelial cells. With an estimated annual prevalence of 276 million new cases, mixed infections with different parasite strains are expected. Although it is considered as obvious that parasites interact with their host to enhance their own survival and transmission, evidence of mixed infections call into question the extent to which unicellular parasites communicate with each other. Here, we demonstrated that different T. vaginalis strains can communicate through the formation of cytoneme-like membranous cell connections. We showed that T. vaginalis adherent strains form abundant membrane protrusions and cytonemes formation of an adherent parasite strain (CDC1132) is affected in the presence of a different strain (G3 or B7RC2). Using cell culture inserts assays, we demonstrated that the effect in cytoneme formation is contact-independent and that extracellular vesicles (EVs) are responsible, at least in part, of the communication among strains. We found that EVs isolated from G3, B7RC2, and CDC1132 strains contain a highly distinct repertoire of proteins, some of them involved in signaling and communication, among other functions. Finally, we showed that parasite adherence to host cells is affected by this communication between strains as binding of adherent T. vaginalis CDC1132 strain to prostate cells is significantly higher in the presence of G3 or B7RC2 strains. Demonstrating that interaction of isolates with distinct phenotypic characteristics may have significant clinical repercussions, we also observed that a poorly adherent parasite strain (G3) adheres more strongly to prostate cells in the presence of an adherent strain. The study of signaling, sensing, and cell communication in parasitic organisms will surely enhance our understanding of the basic biological characteristics of parasites, which may have important consequences in pathogenesis.

Data availability

All data available in the manuscript

Article and author information

Author details

  1. Nehuén Salas

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  2. Manuela Blasco Pedreros

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    Competing interests
    No competing interests declared.
  3. Tuanne dos Santos Melo

    Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
    Competing interests
    No competing interests declared.
  4. Vanina G Maguire

    Área de mejoramiento genético vegetal, Estación Experimental Agropecuaria, Cordoba, Argentina
    Competing interests
    No competing interests declared.
  5. Jihui Sha

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. James A Wohlschlegel

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Antonio Pereira-Neves

    Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
    Competing interests
    No competing interests declared.
  8. Natalia de Miguel

    Laboratorio de Parásitos Anaerobios, Instituto Tecnológico de Chascomús, Buenos Aires, Argentina
    For correspondence
    ndemiguel@intech.gov.ar
    Competing interests
    Natalia de Miguel, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3864-0703

Funding

Fondo para la Investigación Científica y Tecnológica (PICT-2019-01671)

  • Natalia de Miguel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcio L Rodrigues, Instituto Carlos Chagas - Fiocruz PR, Brazil

Version history

  1. Received: January 10, 2023
  2. Preprint posted: January 19, 2023 (view preprint)
  3. Accepted: May 1, 2023
  4. Accepted Manuscript published: May 2, 2023 (version 1)
  5. Version of Record published: June 15, 2023 (version 2)

Copyright

© 2023, Salas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,829
    views
  • 240
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nehuén Salas
  2. Manuela Blasco Pedreros
  3. Tuanne dos Santos Melo
  4. Vanina G Maguire
  5. Jihui Sha
  6. James A Wohlschlegel
  7. Antonio Pereira-Neves
  8. Natalia de Miguel
(2023)
Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite: parasite communication
eLife 12:e86067.
https://doi.org/10.7554/eLife.86067

Share this article

https://doi.org/10.7554/eLife.86067

Further reading

    1. Microbiology and Infectious Disease
    Guoqi Li, Xiaohong Cao ... Shihua Wang
    Research Article

    The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.