CaMKII autophosphorylation can occur between holoenzymes without subunit exchange

  1. Iva Lučić  Is a corresponding author
  2. Léonie Héluin
  3. Pin-Lian Jiang
  4. Alejandro G Castro Scalise
  5. Cong Wang
  6. Andreas Franz
  7. Florian Heyd
  8. Markus Wahl
  9. Fan Liu
  10. Andrew J R Plested  Is a corresponding author
  1. Humboldt-Universität zu Berlin, Germany
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  3. Freie Universität Berlin, Germany

Abstract

The dodecameric protein kinase CaMKII is expressed throughout the body. The alpha isoform is responsible for synaptic plasticity and participates in memory through its phosphorylation of synaptic proteins. Its elaborate subunit organization and propensity for autophosphorylation allow it to preserve neuronal plasticity across space and time. The prevailing hypothesis for the spread of CaMKII activity, involving shuffling of subunits between activated and naïve holoenzymes, is broadly termed subunit exchange. In contrast to the expectations of previous work, we found little evidence for subunit exchange upon activation, and no effect of restraining subunits to their parent holoenzymes. Rather, mass photometry, crosslinking mass spectrometry, single molecule TIRF microscopy and biochemical assays identify inter-holoenzyme phosphorylation (IHP) as the mechanism for spreading phosphorylation. The transient, activity-dependent formation of groups of holoenzymes is well suited to the speed of neuronal activity. Our results place fundamental limits on the activation mechanism of this kinase.

Data availability

All data generated during this study are included in the manuscript, supporting figures and supporting tables.

Article and author information

Author details

  1. Iva Lučić

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    iva.lucic@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8077-2195
  2. Léonie Héluin

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pin-Lian Jiang

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro G Castro Scalise

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Cong Wang

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreas Franz

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Heyd

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9377-9882
  8. Markus Wahl

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2811-5307
  9. Fan Liu

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew J R Plested

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    andrew.plested@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6062-0832

Funding

HORIZON EUROPE Marie Sklodowska-Curie Actions (798696)

  • Iva Lučić

Deutsche Forschungsgemeinschaft (272140445)

  • Andrew J R Plested

Deutsche Forschungsgemeinschaft (323514590 & 446182550)

  • Andrew J R Plested

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Takeo Saneyoshi, Kyoto University, Japan

Version history

  1. Preprint posted: August 5, 2022 (view preprint)
  2. Received: January 10, 2023
  3. Accepted: August 10, 2023
  4. Accepted Manuscript published: August 11, 2023 (version 1)
  5. Version of Record published: August 30, 2023 (version 2)
  6. Version of Record updated: August 31, 2023 (version 3)

Copyright

© 2023, Lučić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 501
    Page views
  • 93
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iva Lučić
  2. Léonie Héluin
  3. Pin-Lian Jiang
  4. Alejandro G Castro Scalise
  5. Cong Wang
  6. Andreas Franz
  7. Florian Heyd
  8. Markus Wahl
  9. Fan Liu
  10. Andrew J R Plested
(2023)
CaMKII autophosphorylation can occur between holoenzymes without subunit exchange
eLife 12:e86090.
https://doi.org/10.7554/eLife.86090

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniel Muñoz-Reyes, Levi J McClelland ... Maria Jose Sanchez-Barrena
    Research Article

    The Neuronal Calcium Sensor 1, an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Ga have revealed how Ric-8A phosphorylation promotes Ga recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Ga subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Ga. Our data show that the binding of NCS-1 and Ga to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to Casein Kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A GEF activity towards Ga when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Riham Ayoubi, Joel Ryan ... Carl Laflamme
    Research Advance

    Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50–75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.