CaMKII autophosphorylation can occur between holoenzymes without subunit exchange

  1. Iva Lučić  Is a corresponding author
  2. Léonie Héluin
  3. Pin-Lian Jiang
  4. Alejandro G Castro Scalise
  5. Cong Wang
  6. Andreas Franz
  7. Florian Heyd
  8. Markus Wahl
  9. Fan Liu
  10. Andrew J R Plested  Is a corresponding author
  1. Humboldt-Universität zu Berlin, Germany
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
  3. Freie Universität Berlin, Germany

Abstract

The dodecameric protein kinase CaMKII is expressed throughout the body. The alpha isoform is responsible for synaptic plasticity and participates in memory through its phosphorylation of synaptic proteins. Its elaborate subunit organization and propensity for autophosphorylation allow it to preserve neuronal plasticity across space and time. The prevailing hypothesis for the spread of CaMKII activity, involving shuffling of subunits between activated and naïve holoenzymes, is broadly termed subunit exchange. In contrast to the expectations of previous work, we found little evidence for subunit exchange upon activation, and no effect of restraining subunits to their parent holoenzymes. Rather, mass photometry, crosslinking mass spectrometry, single molecule TIRF microscopy and biochemical assays identify inter-holoenzyme phosphorylation (IHP) as the mechanism for spreading phosphorylation. The transient, activity-dependent formation of groups of holoenzymes is well suited to the speed of neuronal activity. Our results place fundamental limits on the activation mechanism of this kinase.

Data availability

All data generated during this study are included in the manuscript, supporting figures and supporting tables.

Article and author information

Author details

  1. Iva Lučić

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    iva.lucic@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8077-2195
  2. Léonie Héluin

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Pin-Lian Jiang

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro G Castro Scalise

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Cong Wang

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreas Franz

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Heyd

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9377-9882
  8. Markus Wahl

    Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2811-5307
  9. Fan Liu

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew J R Plested

    Institute of Biology, Cellular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
    For correspondence
    andrew.plested@hu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6062-0832

Funding

HORIZON EUROPE Marie Sklodowska-Curie Actions (798696)

  • Iva Lučić

Deutsche Forschungsgemeinschaft (272140445)

  • Andrew J R Plested

Deutsche Forschungsgemeinschaft (323514590 & 446182550)

  • Andrew J R Plested

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Takeo Saneyoshi, Kyoto University, Japan

Version history

  1. Preprint posted: August 5, 2022 (view preprint)
  2. Received: January 10, 2023
  3. Accepted: August 10, 2023
  4. Accepted Manuscript published: August 11, 2023 (version 1)
  5. Version of Record published: August 30, 2023 (version 2)
  6. Version of Record updated: August 31, 2023 (version 3)

Copyright

© 2023, Lučić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 775
    views
  • 130
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iva Lučić
  2. Léonie Héluin
  3. Pin-Lian Jiang
  4. Alejandro G Castro Scalise
  5. Cong Wang
  6. Andreas Franz
  7. Florian Heyd
  8. Markus Wahl
  9. Fan Liu
  10. Andrew J R Plested
(2023)
CaMKII autophosphorylation can occur between holoenzymes without subunit exchange
eLife 12:e86090.
https://doi.org/10.7554/eLife.86090

Share this article

https://doi.org/10.7554/eLife.86090

Further reading

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.