Low-level repressive histone marks fine-tune gene transcription in neural stem cells

  1. Arjun Rajan
  2. Lucas Anhezini
  3. Noemi Rives-Quinto
  4. Jay Yash Chhabra
  5. Megan C Neville
  6. Elizabeth D Larson
  7. Stephen F Goodwin
  8. Melissa M Harrison
  9. Cheng-Yu Lee  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. University of Oxford, United Kingdom
  3. University of Wisconsin-Madison, United States

Abstract

Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE218257All quantifications are provided in Supplementary File 1.All analysis code used has been deposited in GitHub: https://github.com/Cheng-Yu-Lee-Lab/Rajan-et-al-2023

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Arjun Rajan

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7043-1031
  2. Lucas Anhezini

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Noemi Rives-Quinto

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jay Yash Chhabra

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan C Neville

    Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8506-9944
  6. Elizabeth D Larson

    Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen F Goodwin

    Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0552-4140
  8. Melissa M Harrison

    Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8228-6836
  9. Cheng-Yu Lee

    Life Sciences Institute, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    leecheng@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2291-1297

Funding

National Institute of Neurological Disorders and Stroke (R01NS107496)

  • Cheng-Yu Lee

National Institute of Neurological Disorders and Stroke (R01NS111647)

  • Melissa M Harrison
  • Cheng-Yu Lee

Wellcome Trust (106189/Z/14/Z)

  • Stephen F Goodwin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris Q Doe, Howard Hughes Medical Institute, University of Oregon, United States

Version history

  1. Preprint posted: November 18, 2022 (view preprint)
  2. Received: January 11, 2023
  3. Accepted: June 11, 2023
  4. Accepted Manuscript published: June 14, 2023 (version 1)
  5. Version of Record published: July 13, 2023 (version 2)

Copyright

© 2023, Rajan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,090
    Page views
  • 118
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arjun Rajan
  2. Lucas Anhezini
  3. Noemi Rives-Quinto
  4. Jay Yash Chhabra
  5. Megan C Neville
  6. Elizabeth D Larson
  7. Stephen F Goodwin
  8. Melissa M Harrison
  9. Cheng-Yu Lee
(2023)
Low-level repressive histone marks fine-tune gene transcription in neural stem cells
eLife 12:e86127.
https://doi.org/10.7554/eLife.86127

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Irina AD Mancini, Riccardo Levato ... Jos Malda
    Research Article

    During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.

    1. Cell Biology
    2. Developmental Biology
    Shashwat Mishra, Mohamed Dabaja ... Joy Alcedo
    Research Article Updated

    An animal’s responses to environmental cues are critical for its reproductive program. Thus, a mechanism that allows the animal to sense and adjust to its environment should make for a more efficient reproductive physiology. Here, we demonstrate that in Caenorhabditis elegans specific sensory neurons influence onset of oogenesis through insulin signaling in response to food-derived cues. The chemosensory neurons ASJ modulate oogenesis onset through the insulin-like peptide (ILP) INS-6. In contrast, other sensory neurons, the olfactory neurons AWA, regulate food type-dependent differences in C. elegans fertilization rates, but not onset of oogenesis. AWA modulates fertilization rates at least partly in parallel to insulin receptor signaling, since the insulin receptor DAF-2 regulates fertilization independently of food type, which requires ILPs other than INS-6. Together our findings suggest that optimal reproduction requires the integration of diverse food-derived inputs through multiple neuronal signals acting on the C. elegans germline.