Abstract

Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.

Data availability

Anonymized data and computer code to reproduce all figures will be made available as supplementary files to this manuscript. All relevant demographic and clinical information, all vGRF, derived gait characteristics, and raw sensor time series data, will be provided, in addition to R and Python scripts used to perform the analysis. Additionally, this information will be uploaded to a Regeneron GitHub account here: https://github.com/regeneron-mpds. This data will be made fully available prior to final publication of this manuscript. The GaitRec dataset is available online here: https://www.nature.com/articles/s41597-020-0481-z

Article and author information

Author details

  1. Matthew F Wipperman

    Precision Medicine, Regeneron, Tarrytown, United States
    For correspondence
    matthew.wipperman@regeneron.com
    Competing interests
    Matthew F Wipperman, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1436-3366
  2. Allen Z Lin

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Allen Z Lin, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  3. Kaitlyn M Gayvert

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Kaitlyn M Gayvert, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  4. Benjamin Lahner

    Precision Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Benjamin Lahner, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  5. Selin Somersan-Karakaya

    Early Clinical Development and Experimental Sciences, Regeneron, Tarrytown, United States
    Competing interests
    Selin Somersan-Karakaya, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  6. Xuefang Wu

    Clinical Outcomes Assessment and Patient Innovation, Regeneron, Tarrytown, United States
    Competing interests
    Xuefang Wu, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  7. Joseph Im

    Clinical Outcomes Assessment and Patient Innovation, Regeneron, Tarrytown, United States
    Competing interests
    Joseph Im, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  8. Minji Lee

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Minji Lee, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  9. Bharatkumar Koyani

    Clinical Outcomes Assessment and Patient Innovation, Regeneron, Tarrytown, United States
    Competing interests
    Bharatkumar Koyani, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  10. Ian Setliff

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Ian Setliff, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  11. Malika Thakur

    Clinical Outcomes Assessment and Patient Innovation, Regeneron, Tarrytown, United States
    Competing interests
    Malika Thakur, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  12. Daoyu Duan

    Precision Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Daoyu Duan, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  13. Aurora Breazna

    Biostatistics and Data Management, Regeneron, Tarrytown, United States
    Competing interests
    Aurora Breazna, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  14. Fang Wang

    Precision Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Fang Wang, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  15. Wei Keat Lim

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Wei Keat Lim, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6226-2570
  16. Gabor Halasz

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Gabor Halasz, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  17. Jacek Urbanek

    Biostatistics and Data Management, Regeneron, Tarrytown, United States
    Competing interests
    Jacek Urbanek, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  18. Yamini Patel

    General Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Yamini Patel, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  19. Gurinder S Atwal

    Molecular Profiling and Data Science, Regeneron, Tarrytown, United States
    Competing interests
    Gurinder S Atwal, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  20. Jennifer D Hamilton

    Precision Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Jennifer D Hamilton, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  21. Samuel Stuart

    Precision Medicine, Regeneron, Tarrytown, United States
    Competing interests
    Samuel Stuart, Employee and stockholder of Regeneron Pharmaceuticals, Inc..
  22. Oren Levy

    Early Clinical Development and Experimental Sciences, Regeneron, Tarrytown, United States
    Competing interests
    Oren Levy, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  23. Andreja Avbersek

    Early Clinical Development and Experimental Sciences, Regeneron, Tarrytown, United States
    Competing interests
    Andreja Avbersek, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  24. Rinol Alaj

    Clinical Outcomes Assessment and Patient Innovation, Regeneron, Tarrytown, United States
    For correspondence
    rinol.alaj@regeneron.com
    Competing interests
    Rinol Alaj, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  25. Sara C Hamon

    Precision Medicine, Regeneron, Tarrytown, United States
    For correspondence
    sara.hamon@regeneron.com
    Competing interests
    Sara C Hamon, Employee and shareholder of Regeneron Pharmaceuticals, Inc..
  26. Olivier Harari

    Early Clinical Development and Experimental Sciences, Regeneron, Tarrytown, United States
    For correspondence
    olivier.harari@regeneron.com
    Competing interests
    Olivier Harari, Employee and shareholder of Regeneron Pharmaceuticals, Inc..

Funding

Regeneron Pharmaceuticals (N/A)

  • Matthew F Wipperman
  • Allen Z Lin
  • Kaitlyn M Gayvert
  • Benjamin Lahner
  • Selin Somersan-Karakaya
  • Xuefang Wu
  • Joseph Im
  • Minji Lee
  • Bharatkumar Koyani
  • Ian Setliff
  • Malika Thakur
  • Daoyu Duan
  • Aurora Breazna
  • Fang Wang
  • Wei Keat Lim
  • Gabor Halasz
  • Jacek Urbanek
  • Yamini Patel
  • Gurinder S Atwal
  • Jennifer D Hamilton
  • Oren Levy
  • Andreja Avbersek
  • Rinol Alaj
  • Sara C Hamon
  • Olivier Harari

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: For the pilot study, participants were recruited internally within the Regeneron facility located in Tarrytown, NY, USA, and were provided written informed consent prior to participation. The study was considered exempt research under the Common Rule (45 CFR Sec 46.104). The R5069-OA-1849 study protocol received Institutional Review Board and ethics committee approvals from Moldova Medicines and Medical Device Agency and National Ethics Committee for Moldova, and the Western Institutional Review Board.

Copyright

© 2024, Wipperman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 899
    views
  • 138
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew F Wipperman
  2. Allen Z Lin
  3. Kaitlyn M Gayvert
  4. Benjamin Lahner
  5. Selin Somersan-Karakaya
  6. Xuefang Wu
  7. Joseph Im
  8. Minji Lee
  9. Bharatkumar Koyani
  10. Ian Setliff
  11. Malika Thakur
  12. Daoyu Duan
  13. Aurora Breazna
  14. Fang Wang
  15. Wei Keat Lim
  16. Gabor Halasz
  17. Jacek Urbanek
  18. Yamini Patel
  19. Gurinder S Atwal
  20. Jennifer D Hamilton
  21. Samuel Stuart
  22. Oren Levy
  23. Andreja Avbersek
  24. Rinol Alaj
  25. Sara C Hamon
  26. Olivier Harari
(2024)
Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning
eLife 13:e86132.
https://doi.org/10.7554/eLife.86132

Share this article

https://doi.org/10.7554/eLife.86132

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.