Abstract

Enhancers orchestrate gene expression programs that drive multicellular development and lineage commitment. Thus, genetic variants at enhancers are thought to contribute to developmental diseases by altering cell fate commitment. However, while many variant-containing enhancers have been identified, studies to endogenously test the impact of these enhancers on lineage commitment have been lacking. We perform a single-cell CRISPRi screen to assess the endogenous roles of 25 enhancers and putative cardiac target genes implicated in genetic studies of congenital heart defects (CHD). We identify 16 enhancers whose repression leads to deficient differentiation of human cardiomyocytes (CMs). A focused CRISPRi validation screen shows that repression of TBX5 enhancers delays the transcriptional switch from mid- to late-stage CM states. Endogenous genetic deletions of two TBX5 enhancers phenocopy epigenetic perturbations. Together, these results identify critical enhancers of cardiac development and suggest that misregulation of these enhancers could contribute to cardiac defects in human patients.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE190475.

The following data sets were generated

Article and author information

Author details

  1. Daniel A Armendariz

    Cecil H and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sean C Goetsch

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anjana Sundarrajan

    Cecil H and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sushama Sivakumar

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7877-4821
  5. Yihan Wang

    Cecil H and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shiqi Xie

    Cecil H and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikhil V Munshi

    Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Nikhil.Munshi@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Gary C Hon

    Cecil H and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Gary.Hon@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1615-0391

Funding

NIH (DP2GM128203)

  • Gary C Hon

Department of Defense (PR172060)

  • Nikhil V Munshi

NIH (UM1HG011996)

  • Nikhil V Munshi
  • Gary C Hon

NIH (1R35GM145235)

  • Gary C Hon

CPRIT (RP190451)

  • Gary C Hon

NIH (HL136604)

  • Nikhil V Munshi

NIH (HL151650)

  • Nikhil V Munshi

Burroughs Wellcome Fund (1019804)

  • Gary C Hon

Burroughs Wellcome Fund (1009838)

  • Nikhil V Munshi

Welch Foundation (I-2103-2022033)

  • Gary C Hon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Armendariz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,439
    views
  • 164
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel A Armendariz
  2. Sean C Goetsch
  3. Anjana Sundarrajan
  4. Sushama Sivakumar
  5. Yihan Wang
  6. Shiqi Xie
  7. Nikhil V Munshi
  8. Gary C Hon
(2023)
CHD-associated enhancers shape human cardiomyocyte lineage commitment
eLife 12:e86206.
https://doi.org/10.7554/eLife.86206

Share this article

https://doi.org/10.7554/eLife.86206

Further reading

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.

    1. Developmental Biology
    2. Genetics and Genomics
    Mitchell Bestry, Alexander N Larcombe ... David Martino
    Research Article

    Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.