Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation

  1. Wenfei Pan
  2. Vladimir A Meshcheryakov
  3. Tianjie Li
  4. Yi Wang
  5. Gourisankar Ghosh
  6. Vivien Ya-Fan Wang  Is a corresponding author
  1. University of Macau, China
  2. Chinese University of Hong Kong, Hong Kong
  3. University of California, San Diego, United States
  4. University of Macau, Macao

Abstract

The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.

Data availability

The atomic coordinates have been deposited in the Protein Data Bank, www.wwpdb.org (PDB ID codes 7CLI, 7VUQ, 7VUP and 7W7L).

Article and author information

Author details

  1. Wenfei Pan

    Faculty of Health Sciences, University of Macau, Taipa, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Vladimir A Meshcheryakov

    Faculty of Health Sciences, University of Macau, Taipa, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Tianjie Li

    Chinese University of Hong Kong, Shatin, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4734-1577
  4. Yi Wang

    Chinese University of Hong Kong, Shatin, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Gourisankar Ghosh

    Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6311-7351
  6. Vivien Ya-Fan Wang

    Faculty of Health Sciences, University of Macau, Taipa, Macao
    For correspondence
    vivienwang@um.edu.mo
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1984-2713

Funding

Science and Technology Development Fund, Macao SAR (0104/2019/A2)

  • Vivien Ya-Fan Wang

Science and Technology Development Fund, Macao SAR (0089/2022/AFJ)

  • Vivien Ya-Fan Wang

Multi Year Research Grant, University of Macau (MYRG2018-00093-FHS)

  • Vivien Ya-Fan Wang

Hong Kong Research Grant Council Collaborative Research Fund (C6021-19EF)

  • Yi Wang

Chinese University of Hong Kong

  • Tianjie Li
  • Yi Wang

National Institutes of Health (GM085490)

  • Gourisankar Ghosh

National Institutes of Health (CA142642)

  • Gourisankar Ghosh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Preprint posted: May 3, 2022 (view preprint)
  2. Received: January 18, 2023
  3. Accepted: February 7, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Version of Record published: March 7, 2023 (version 2)

Copyright

© 2023, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,006
    views
  • 165
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenfei Pan
  2. Vladimir A Meshcheryakov
  3. Tianjie Li
  4. Yi Wang
  5. Gourisankar Ghosh
  6. Vivien Ya-Fan Wang
(2023)
Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation
eLife 12:e86258.
https://doi.org/10.7554/eLife.86258

Share this article

https://doi.org/10.7554/eLife.86258

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.