Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Tulane National Primate Research Center, United States

Abstract

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. The raw data discussed in this publication are accessible through NCBI's Gene Expression Ominubus (GEO).

The following data sets were generated

Article and author information

Author details

  1. Elizabeth Griggs

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Kyle Trageser

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  3. Sean Naughton

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Eun-Jeong Yang

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Brian Mathew

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Grace Van Hyfte

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Linh Hellmers

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  8. Nathalie Jette

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Nathalie Jette, receives grant funding paid to her institution from NINDS (NIH U24NS107201, NIH IU54NS100064, 3R01CA202911-05S1, R21NS122389, R01HL161847). Some of these grants are COVID-19 related but focus on the neuroimaging findings. The other authors declare that they have no conflict of interest with the contents of this article..
  9. Molly Estill

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  10. Li Shen

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Tracy Fischer

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  12. Giulio Maria Pasinetti

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    giulio.pasinetti@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1524-5196

Funding

No external funding was received for this work.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Ethics

Human subjects: While no living humans or animals were used for these studies, we performed studies using human postmortem tissue in accordance with IRB-approved guidelines and regulations at Mount Sinai.

Version history

  1. Preprint posted: November 23, 2022 (view preprint)
  2. Received: January 20, 2023
  3. Accepted: June 22, 2023
  4. Accepted Manuscript published: July 7, 2023 (version 1)
  5. Version of Record published: July 21, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 684
    views
  • 152
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti
(2023)
Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects
eLife 12:e86333.
https://doi.org/10.7554/eLife.86333

Share this article

https://doi.org/10.7554/eLife.86333

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.