Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Tulane National Primate Research Center, United States

Abstract

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. The raw data discussed in this publication are accessible through NCBI's Gene Expression Ominubus (GEO).

The following data sets were generated

Article and author information

Author details

  1. Elizabeth Griggs

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Kyle Trageser

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  3. Sean Naughton

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Eun-Jeong Yang

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Brian Mathew

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Grace Van Hyfte

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Linh Hellmers

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  8. Nathalie Jette

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Nathalie Jette, receives grant funding paid to her institution from NINDS (NIH U24NS107201, NIH IU54NS100064, 3R01CA202911-05S1, R21NS122389, R01HL161847). Some of these grants are COVID-19 related but focus on the neuroimaging findings. The other authors declare that they have no conflict of interest with the contents of this article..
  9. Molly Estill

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  10. Li Shen

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Tracy Fischer

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  12. Giulio Maria Pasinetti

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    giulio.pasinetti@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1524-5196

Funding

No external funding was received for this work.

Ethics

Human subjects: While no living humans or animals were used for these studies, we performed studies using human postmortem tissue in accordance with IRB-approved guidelines and regulations at Mount Sinai.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 744
    views
  • 161
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti
(2023)
Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects
eLife 12:e86333.
https://doi.org/10.7554/eLife.86333

Share this article

https://doi.org/10.7554/eLife.86333

Further reading

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Louna Fruchard, Anamaria Babosan ... Zeynep Baharoglu
    Research Article

    Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). tgt is required for optimal growth of Vibrio cholerae in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of tgt. RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate tgt expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.