Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Tulane National Primate Research Center, United States

Abstract

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. The raw data discussed in this publication are accessible through NCBI's Gene Expression Ominubus (GEO).

The following data sets were generated

Article and author information

Author details

  1. Elizabeth Griggs

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Kyle Trageser

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  3. Sean Naughton

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Eun-Jeong Yang

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Brian Mathew

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Grace Van Hyfte

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Linh Hellmers

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  8. Nathalie Jette

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Nathalie Jette, receives grant funding paid to her institution from NINDS (NIH U24NS107201, NIH IU54NS100064, 3R01CA202911-05S1, R21NS122389, R01HL161847). Some of these grants are COVID-19 related but focus on the neuroimaging findings. The other authors declare that they have no conflict of interest with the contents of this article..
  9. Molly Estill

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  10. Li Shen

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Tracy Fischer

    Tulane National Primate Research Center, Covington, United States
    Competing interests
    No competing interests declared.
  12. Giulio Maria Pasinetti

    Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    giulio.pasinetti@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1524-5196

Funding

No external funding was received for this work.

Ethics

Human subjects: While no living humans or animals were used for these studies, we performed studies using human postmortem tissue in accordance with IRB-approved guidelines and regulations at Mount Sinai.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 732
    views
  • 159
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth Griggs
  2. Kyle Trageser
  3. Sean Naughton
  4. Eun-Jeong Yang
  5. Brian Mathew
  6. Grace Van Hyfte
  7. Linh Hellmers
  8. Nathalie Jette
  9. Molly Estill
  10. Li Shen
  11. Tracy Fischer
  12. Giulio Maria Pasinetti
(2023)
Recapitulation of pathophysiological features of AD in SARS-CoV-2 infected subjects
eLife 12:e86333.
https://doi.org/10.7554/eLife.86333

Share this article

https://doi.org/10.7554/eLife.86333

Further reading

    1. Microbiology and Infectious Disease
    Yang Fu, Xiao-Dan Luo ... Wence Wang
    Research Article

    The gut microbiota is implicated in the pathogenesis of hyperuricemia (HUA) and gout. However, it remains unclear whether probiotics residing in the host gut, such as Lactobacillus, can prevent HUA development. Herein, we isolated Lactobacillus plantarum SQ001 from the cecum of HUA geese and conducted in vitro assays on uric acid (UA) and nucleoside co-culture. Metabolomics and genome-wide analyses, revealed that this strain may promote nucleoside uptake and hydrolysis through its nucleoside hydrolase gene. The functional role of iunH gene was confirmed via heterologous expression and gene knockout studies. Oral administration of L. plantarum SQ001 resulted in increased abundance of Lactobacillus species and reduced serum UA levels. Furthermore, it downregulated hepatic xanthine oxidase, a key enzyme involved in UA synthesis, as well as renal reabsorption protein GLUT9, while enhancing the expression of renal excretion protein ABCG2. Our findings suggest that L. plantarum has potential to ameliorate gut microbial dysbiosis with HUA, thereby offering insights into its potential application as a probiotic therapy for individuals with HUA or gout.

    1. Microbiology and Infectious Disease
    Lianhua Qin, Junfang Xu ... Haipeng Liu
    Research Article

    Deeper understanding of the crosstalk between host cells and Mycobacterium tuberculosis (Mtb) provides crucial guidelines for the rational design of novel intervention strategies against tuberculosis (TB). Mycobacteria possess a unique complex cell wall with arabinogalactan (AG) as a critical component. AG has been identified as a virulence factor of Mtb which is recognized by host galectin-9. Here, we demonstrate that galectin-9 directly inhibited mycobacterial growth through AG-binding property of carbohydrate-recognition domain 2. Furthermore, IgG antibodies with AG specificity were detected in the serum of TB patients. Based on the interaction between galectin-9 and AG, we developed a monoclonal antibody (mAb) screening assay and identified AG-specific mAbs which profoundly inhibit Mtb growth. Mechanistically, proteomic profiling and morphological characterizations revealed that AG-specific mAbs regulate AG biosynthesis, thereby inducing cell wall swelling. Thus, direct AG-binding by galectin-9 or antibodies contributes to protection against TB. Our findings pave the way for the rational design of novel immunotherapeutic strategies for TB control.