Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning

  1. Huu Hoang
  2. Shinichiro Tsutsumi
  3. Masanori Matsuzaki
  4. Masanobu Kano
  5. Mitsuo Kawato
  6. Kazuo Kitamura  Is a corresponding author
  7. Keisuke Toyama  Is a corresponding author
  1. Advanced Telecommunications Research Institute International, Japan
  2. RIKEN Center for Brain Science, Japan
  3. The University of Tokyo, Japan
  4. University of Yamanashi, Japan
  5. ATR Neural Information Analysis Laboratories, Japan

Abstract

Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.

Data availability

Data analysed for all the figures are included in the manuscript and source data files. The Aldoc-tdTomato mouse line is available at RIKEN Bio Resource Center (RBRC10927).

The following previously published data sets were used

Article and author information

Author details

  1. Huu Hoang

    Computational Brain Imaging, Advanced Telecommunications Research Institute International, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1463-8323
  2. Shinichiro Tsutsumi

    RIKEN Center for Brain Science, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Masanori Matsuzaki

    Department of Physiology, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3872-4322
  4. Masanobu Kano

    Department of Neurophysiology, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0725-3292
  5. Mitsuo Kawato

    Computational Brain Imaging, Advanced Telecommunications Research Institute International, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazuo Kitamura

    Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
    For correspondence
    kitamurak@yamanashi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8956-4122
  7. Keisuke Toyama

    Neural Information Analysis Laboratories, ATR Neural Information Analysis Laboratories, Kyoto, Japan
    For correspondence
    toyama@atr.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science

  • Huu Hoang
  • Masanori Matsuzaki
  • Masanobu Kano
  • Mitsuo Kawato
  • Kazuo Kitamura
  • Keisuke Toyama

Japan Science and Technology Agency

  • Huu Hoang
  • Keisuke Toyama

Japan Agency for Medical Research and Development

  • Huu Hoang
  • Mitsuo Kawato
  • Kazuo Kitamura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer L Raymond, Stanford University, United States

Ethics

Animal experimentation: All experiments were approved by the Animal Experiment Committees of the University of Tokyo (#P08-015) and the University of Yamanashi (#A27-1), and carried out in accordance with national regulations and institutional guidelines.

Version history

  1. Preprint posted: December 5, 2022 (view preprint)
  2. Received: January 20, 2023
  3. Accepted: September 13, 2023
  4. Accepted Manuscript published: September 15, 2023 (version 1)
  5. Version of Record published: September 27, 2023 (version 2)

Copyright

© 2023, Hoang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 926
    views
  • 185
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huu Hoang
  2. Shinichiro Tsutsumi
  3. Masanori Matsuzaki
  4. Masanobu Kano
  5. Mitsuo Kawato
  6. Kazuo Kitamura
  7. Keisuke Toyama
(2023)
Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning
eLife 12:e86340.
https://doi.org/10.7554/eLife.86340

Share this article

https://doi.org/10.7554/eLife.86340

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.