Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning

  1. Huu Hoang
  2. Shinichiro Tsutsumi
  3. Masanori Matsuzaki
  4. Masanobu Kano
  5. Mitsuo Kawato
  6. Kazuo Kitamura  Is a corresponding author
  7. Keisuke Toyama  Is a corresponding author
  1. Advanced Telecommunications Research Institute International, Japan
  2. RIKEN Center for Brain Science, Japan
  3. The University of Tokyo, Japan
  4. University of Yamanashi, Japan
  5. ATR Neural Information Analysis Laboratories, Japan
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/86340/elife-86340-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huu Hoang
  2. Shinichiro Tsutsumi
  3. Masanori Matsuzaki
  4. Masanobu Kano
  5. Mitsuo Kawato
  6. Kazuo Kitamura
  7. Keisuke Toyama
(2023)
Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning
eLife 12:e86340.
https://doi.org/10.7554/eLife.86340