Tracking subjects' strategies in behavioural choice experiments at trial resolution

  1. Silvia Maggi
  2. Rebecca M Hock
  3. Martin O'Neill
  4. Mark Buckley
  5. Paula M Moran
  6. Tobias Bast
  7. Musa Sami
  8. Mark D Humphries  Is a corresponding author
  1. University of Nottingham, United Kingdom
  2. Atlantic Technological University, Ireland
  3. University of Oxford, United Kingdom

Abstract

Investigating how, when, and what subjects learn during decision-making tasks requires tracking their choice strategies on a trial-by-trial basis. Here we present a simple but effective probabilistic approach to tracking choice strategies at trial resolution using Bayesian evidence accumulation. We show this approach identifies both successful learning and the exploratory strategies used in decision tasks performed by humans, non-human primates, rats, and synthetic agents. Both when subjects learn and when rules change the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that subjects have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.

Data availability

Source data from the rat Y-maze task data are available from crcns.org at http://dx.doi.org/10.6080/K0KH0KH5. Source data from the rat lever-press task (32 rats), the human gain/loss task (20 participants) and the primate stimulus-to-action task (one session) are available from the Nottingham Research Data Management Service at http://doi.org/10.17639/nott.7274.Processed data and analysis code to replicate all figures are available in our GitHub repository https://github.com/Humphries-Lab/Bayesian_strategy_analysis_Paper. Our copies of the source data for the Y-maze task, lever-press task, gain/loss task, and stimulus-to-action task are also freely available from the same repository.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Silvia Maggi

    School of Psychology, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6533-3509
  2. Rebecca M Hock

    School of Psychology, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0917-570X
  3. Martin O'Neill

    Deparyment of Health and Nutritional Sciences, Atlantic Technological University, Sligo, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Buckley

    Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7455-8486
  5. Paula M Moran

    School of Psychology, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tobias Bast

    School of Psychology, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6163-3229
  7. Musa Sami

    Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Mark D Humphries

    School of Psychology, University of Nottingham, Nottingham, United Kingdom
    For correspondence
    mark.humphries@nottingham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1906-2581

Funding

Medical Research Council (MR/J008648/1)

  • Mark D Humphries

Medical Research Council (MR/P005659/1)

  • Mark D Humphries

Medical Research Council (MR/S025944/1)

  • Mark D Humphries

Medical Research Council (MR/K005480/1)

  • Mark Buckley

Biotechnology and Biological Sciences Research Council (BB/T00598X/1)

  • Mark Buckley
  • Mark D Humphries

Biotechnology and Biological Sciences Research Council (BB/M008770/1)

  • Rebecca M Hock
  • Paula M Moran
  • Tobias Bast

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Rat - lever-press task: All experimental procedures were conducted in accordance with the requirements of the United Kingdom (UK) Animals (Scientific Procedures) Act 1986, approved by the University of Nottingham's Animal Welfare and Ethical Review Board (AWERB) and run under the authority of Home Office project license 30/3357.Non-human primate task: All animal training and experimental procedures were performed in accordance with the guidelines of the UK Animals (Scientific Procedures) Act of 1986, licensed by the UK Home Office, and approved by Oxford University's Committee on Animal Care and Ethical Review.

Human subjects: The human gain/loss task study was approved by Research Ethics Committee (Stanmore London REC 17/LO/0577). All participants were read a participation information leaflet and undertook informed consent.

Copyright

© 2024, Maggi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,918
    views
  • 273
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Silvia Maggi
  2. Rebecca M Hock
  3. Martin O'Neill
  4. Mark Buckley
  5. Paula M Moran
  6. Tobias Bast
  7. Musa Sami
  8. Mark D Humphries
(2024)
Tracking subjects' strategies in behavioural choice experiments at trial resolution
eLife 13:e86491.
https://doi.org/10.7554/eLife.86491

Share this article

https://doi.org/10.7554/eLife.86491

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.