Abstract

Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson's disease (PD) and Crohn's disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; source data files for western blots have been provided for all figures.

Article and author information

Author details

  1. Xiang Wang

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Xiang Wang, is an employee of Denali Therapeutics..
  2. Vitaliy V Bondar

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Vitaliy V Bondar, was an employees of Denali Therapeutics when these studies were conducted and is currently an employee of REGENEXBIO Inc..
  3. Oliver B Davis

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Oliver B Davis, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-8651
  4. Michael T Maloney

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Michael T Maloney, is an employee of Denali Therapeutics..
  5. Maayan Agam

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Maayan Agam, is an employee of Denali Therapeutics..
  6. Marcus Y Chin

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Marcus Y Chin, is an employee of Denali Therapeutics..
  7. Audrey Cheuk-Nga Ho

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Audrey Cheuk-Nga Ho, was an employee of Denali Therapeutics when these studies were conducted and is currently an employee of Cellares..
  8. Rajarshi Ghosh

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Rajarshi Ghosh, is an employee of Denali Therapeutics..
  9. Dara E Leto

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Dara E Leto, is an employee of Denali Therapeutics..
  10. David Joy

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    David Joy, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9941-9538
  11. Meredith EK Calvert

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Meredith EK Calvert, is an employee of Denali Therapeutics..
  12. Joseph W Lewcock

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Joseph W Lewcock, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3012-7881
  13. Gilbert Di Paolo

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Gilbert Di Paolo, is an employee of Denali Therapeutics..
  14. Robert G Thorne

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Robert G Thorne, is an employee of Denali Therapeutics..
  15. Zachary K Sweeney

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Zachary K Sweeney, was an employee of Denali Therapeutics when these studies were conducted and is currently an employee of Interline Therapeutics Inc..
  16. Anastasia G Henry

    Denali Therapeutics, South San Francisco, United States
    For correspondence
    henry@dnli.com
    Competing interests
    Anastasia G Henry, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8124-5477

Funding

No external funding was received for this work.

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,459
    views
  • 572
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang Wang
  2. Vitaliy V Bondar
  3. Oliver B Davis
  4. Michael T Maloney
  5. Maayan Agam
  6. Marcus Y Chin
  7. Audrey Cheuk-Nga Ho
  8. Rajarshi Ghosh
  9. Dara E Leto
  10. David Joy
  11. Meredith EK Calvert
  12. Joseph W Lewcock
  13. Gilbert Di Paolo
  14. Robert G Thorne
  15. Zachary K Sweeney
  16. Anastasia G Henry
(2023)
Rab12 is a regulator of LRRK2 and its activation by damaged lysosomes
eLife 12:e87255.
https://doi.org/10.7554/eLife.87255

Share this article

https://doi.org/10.7554/eLife.87255

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.