Abstract

Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson's disease (PD) and Crohn's disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; source data files for western blots have been provided for all figures.

Article and author information

Author details

  1. Xiang Wang

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Xiang Wang, is an employee of Denali Therapeutics..
  2. Vitaliy V Bondar

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Vitaliy V Bondar, was an employees of Denali Therapeutics when these studies were conducted and is currently an employee of REGENEXBIO Inc..
  3. Oliver B Davis

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Oliver B Davis, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-8651
  4. Michael T Maloney

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Michael T Maloney, is an employee of Denali Therapeutics..
  5. Maayan Agam

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Maayan Agam, is an employee of Denali Therapeutics..
  6. Marcus Y Chin

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Marcus Y Chin, is an employee of Denali Therapeutics..
  7. Audrey Cheuk-Nga Ho

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Audrey Cheuk-Nga Ho, was an employee of Denali Therapeutics when these studies were conducted and is currently an employee of Cellares..
  8. Rajarshi Ghosh

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Rajarshi Ghosh, is an employee of Denali Therapeutics..
  9. Dara E Leto

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Dara E Leto, is an employee of Denali Therapeutics..
  10. David Joy

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    David Joy, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9941-9538
  11. Meredith EK Calvert

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Meredith EK Calvert, is an employee of Denali Therapeutics..
  12. Joseph W Lewcock

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Joseph W Lewcock, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3012-7881
  13. Gilbert Di Paolo

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Gilbert Di Paolo, is an employee of Denali Therapeutics..
  14. Robert G Thorne

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Robert G Thorne, is an employee of Denali Therapeutics..
  15. Zachary K Sweeney

    Denali Therapeutics, South San Francisco, United States
    Competing interests
    Zachary K Sweeney, was an employee of Denali Therapeutics when these studies were conducted and is currently an employee of Interline Therapeutics Inc..
  16. Anastasia G Henry

    Denali Therapeutics, South San Francisco, United States
    For correspondence
    henry@dnli.com
    Competing interests
    Anastasia G Henry, is an employee of Denali Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8124-5477

Funding

No external funding was received for this work.

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,522
    views
  • 579
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiang Wang
  2. Vitaliy V Bondar
  3. Oliver B Davis
  4. Michael T Maloney
  5. Maayan Agam
  6. Marcus Y Chin
  7. Audrey Cheuk-Nga Ho
  8. Rajarshi Ghosh
  9. Dara E Leto
  10. David Joy
  11. Meredith EK Calvert
  12. Joseph W Lewcock
  13. Gilbert Di Paolo
  14. Robert G Thorne
  15. Zachary K Sweeney
  16. Anastasia G Henry
(2023)
Rab12 is a regulator of LRRK2 and its activation by damaged lysosomes
eLife 12:e87255.
https://doi.org/10.7554/eLife.87255

Share this article

https://doi.org/10.7554/eLife.87255

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.