Osteonecrosis in Gaucher Disease in the era of multiple therapies: biomarker set for risk stratification from a tertiary referral center

  1. Mohsen Basiri
  2. Mohammad E Ghaffari
  3. Jiapeng Ruan
  4. Vagishwari Murugesan
  5. Nathaniel Kleytman
  6. Glenn Belinsky
  7. Amir Akhavan
  8. Andrew Lischuk
  9. Lilu Guo
  10. Katherine Klinger
  11. Pramod K Mistry  Is a corresponding author
  1. Yale University, United States
  2. Guilan University of Medical Sciences, Islamic Republic of Iran
  3. University of Toronto, Canada
  4. University of Massachusetts Dartmouth, United States
  5. Sanofi, United States

Abstract

Background: A salutary effect of treatments for Gaucher disease (GD) has been reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT), and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity or anti-drug antibodies.

Objective: Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center.

Methods: Longitudinal follow-ups of 155 GD patients between 2001 and 2021, were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment.

Results: The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI,1.5 - 67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI,1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001).

Conclusions: There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization.

Funding: LSD Training Fellowship from Sanofi to MB.

Data availability

This observational study is approved by Yale University IRB and each patient provided informed consent. The patients have not provided consent to sharing their data with other investigators. Interested academic, non-commercial researchers can contact the Senior Corresponding author, Dr Pramod Mistry at Pramod.mistry@yale.edu to discuss the request to access original data. They do not need to apply or submit a project proposal. All statistical analyses were performed with SPSS version 28 (SPSS Inc., Chicago, IL, USA). MedCalc version 20.026 was used for ROC curve analysis and graphs were plotted by GraphPad Prism version 9.3.1.We do not have consent to share individual patient data. Even de-identified data risks identification through age and GBA genotype information, thus violating HIPPA patient confidentiality. Upon request to the Senior Corresponding author, the PI, we will share processed version of datasets.

Article and author information

Author details

  1. Mohsen Basiri

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9592-4059
  2. Mohammad E Ghaffari

    Department of ENT, Head and Neck Surgery, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
    Competing interests
    No competing interests declared.
  3. Jiapeng Ruan

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Vagishwari Murugesan

    Department of Rheumatology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Nathaniel Kleytman

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Glenn Belinsky

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Amir Akhavan

    Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, United States
    Competing interests
    No competing interests declared.
  8. Andrew Lischuk

    Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  9. Lilu Guo

    Translational Sciences, Sanofi, Cambridge, United States
    Competing interests
    Lilu Guo, is an employee of Sanofi and may hold stocks..
  10. Katherine Klinger

    Translational Sciences, Sanofi, Framingham, United States
    Competing interests
    Katherine Klinger, is an employee of Sanofi and may hold stocks..
  11. Pramod K Mistry

    Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States
    For correspondence
    pramod.mistry@yale.edu
    Competing interests
    Pramod K Mistry, Reviewing editor, eLifePKM receives a research grant from Sanofi and has received travel support from Sanofi..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3447-6421

Funding

Sanofi Genzyme (LSD Training Fellowship from Sanofi to MB)

  • Mohsen Basiri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jameel Iqbal, DaVita Labs, United States

Ethics

Human subjects: All participants were enrolled in our observational studies approved by Yale's IRB. Patients also were provided with verbal explanations and their data were collected after signing consent forms.HIC#0209021074HIC#1005006783

Version history

  1. Received: March 8, 2023
  2. Preprint posted: March 27, 2023 (view preprint)
  3. Accepted: May 22, 2023
  4. Accepted Manuscript published: May 30, 2023 (version 1)
  5. Version of Record published: July 3, 2023 (version 2)

Copyright

© 2023, Basiri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,141
    views
  • 238
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Basiri
  2. Mohammad E Ghaffari
  3. Jiapeng Ruan
  4. Vagishwari Murugesan
  5. Nathaniel Kleytman
  6. Glenn Belinsky
  7. Amir Akhavan
  8. Andrew Lischuk
  9. Lilu Guo
  10. Katherine Klinger
  11. Pramod K Mistry
(2023)
Osteonecrosis in Gaucher Disease in the era of multiple therapies: biomarker set for risk stratification from a tertiary referral center
eLife 12:e87537.
https://doi.org/10.7554/eLife.87537

Share this article

https://doi.org/10.7554/eLife.87537

Further reading

    1. Medicine
    Gordon L Klein
    Review Article

    Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body’s supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.

    1. Computational and Systems Biology
    2. Medicine
    Seo-Gyeong Bae, Guo Nan Yin ... Jihwan Park
    Research Article

    Erectile dysfunction (ED) affects a significant proportion of men aged 40–70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.