Osteonecrosis in Gaucher Disease in the era of multiple therapies: biomarker set for risk stratification from a tertiary referral center

  1. Mohsen Basiri
  2. Mohammad E Ghaffari
  3. Jiapeng Ruan
  4. Vagishwari Murugesan
  5. Nathaniel Kleytman
  6. Glenn Belinsky
  7. Amir Akhavan
  8. Andrew Lischuk
  9. Lilu Guo
  10. Katherine Klinger
  11. Pramod K Mistry  Is a corresponding author
  1. Yale University, United States
  2. Guilan University of Medical Sciences, Islamic Republic of Iran
  3. University of Toronto, Canada
  4. University of Massachusetts Dartmouth, United States
  5. Sanofi, United States

Abstract

Background: A salutary effect of treatments for Gaucher disease (GD) has been reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT), and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity or anti-drug antibodies.

Objective: Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center.

Methods: Longitudinal follow-ups of 155 GD patients between 2001 and 2021, were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment.

Results: The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI,1.5 - 67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI,1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001).

Conclusions: There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization.

Funding: LSD Training Fellowship from Sanofi to MB.

Data availability

This observational study is approved by Yale University IRB and each patient provided informed consent. The patients have not provided consent to sharing their data with other investigators. Interested academic, non-commercial researchers can contact the Senior Corresponding author, Dr Pramod Mistry at Pramod.mistry@yale.edu to discuss the request to access original data. They do not need to apply or submit a project proposal. All statistical analyses were performed with SPSS version 28 (SPSS Inc., Chicago, IL, USA). MedCalc version 20.026 was used for ROC curve analysis and graphs were plotted by GraphPad Prism version 9.3.1.We do not have consent to share individual patient data. Even de-identified data risks identification through age and GBA genotype information, thus violating HIPPA patient confidentiality. Upon request to the Senior Corresponding author, the PI, we will share processed version of datasets.

Article and author information

Author details

  1. Mohsen Basiri

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9592-4059
  2. Mohammad E Ghaffari

    Department of ENT, Head and Neck Surgery, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
    Competing interests
    No competing interests declared.
  3. Jiapeng Ruan

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Vagishwari Murugesan

    Department of Rheumatology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  5. Nathaniel Kleytman

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Glenn Belinsky

    Department of Internal Medicine, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Amir Akhavan

    Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, United States
    Competing interests
    No competing interests declared.
  8. Andrew Lischuk

    Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  9. Lilu Guo

    Translational Sciences, Sanofi, Cambridge, United States
    Competing interests
    Lilu Guo, is an employee of Sanofi and may hold stocks..
  10. Katherine Klinger

    Translational Sciences, Sanofi, Framingham, United States
    Competing interests
    Katherine Klinger, is an employee of Sanofi and may hold stocks..
  11. Pramod K Mistry

    Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States
    For correspondence
    pramod.mistry@yale.edu
    Competing interests
    Pramod K Mistry, Reviewing editor, eLifePKM receives a research grant from Sanofi and has received travel support from Sanofi..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3447-6421

Funding

Sanofi Genzyme (LSD Training Fellowship from Sanofi to MB)

  • Mohsen Basiri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants were enrolled in our observational studies approved by Yale's IRB. Patients also were provided with verbal explanations and their data were collected after signing consent forms.HIC#0209021074HIC#1005006783

Copyright

© 2023, Basiri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,415
    views
  • 297
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Basiri
  2. Mohammad E Ghaffari
  3. Jiapeng Ruan
  4. Vagishwari Murugesan
  5. Nathaniel Kleytman
  6. Glenn Belinsky
  7. Amir Akhavan
  8. Andrew Lischuk
  9. Lilu Guo
  10. Katherine Klinger
  11. Pramod K Mistry
(2023)
Osteonecrosis in Gaucher Disease in the era of multiple therapies: biomarker set for risk stratification from a tertiary referral center
eLife 12:e87537.
https://doi.org/10.7554/eLife.87537

Share this article

https://doi.org/10.7554/eLife.87537

Further reading

    1. Medicine
    Sami Fawaz, Severine Marti ... Thierry Couffinhal
    Research Article

    Background:

    Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP.

    Methods:

    We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP.

    Results:

    CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY.

    Conclusions:

    Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations.

    Funding:

    This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study.

    Clinical trial number:

    NCT04581057.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Soo-Yeon Hwang, Kyung-Hwa Jeon ... Youngjoo Kwon
    Research Article

    HER2 overexpression significantly contributes to the aggressive nature and recurrent patterns observed in various solid tumors, notably gastric cancers. Trastuzumab, HER2-targeting monoclonal antibody drug, has shown considerable clinical success; however, readily emerging drug resistance emphasizes the pressing need for improved interventions in HER2-overexpressing cancers. To address this, we proposed targeting the protein-protein interaction (PPI) between ELF3 and MED23 as an alternative therapeutic approach to trastuzumab. In this study, we synthesized a total of 26 compounds consisting of 10 chalcones, 7 pyrazoline acetyl, and 9 pyrazoline propionyl derivatives, and evaluated their biological activity as potential ELF3-MED23 PPI inhibitors. Upon systematic analysis, candidate compound 10 was selected due to its potency in downregulating reporter gene activity of ERBB2 promoter confirmed by SEAP activity and its effect on HER2 protein and mRNA levels. Compound 10 effectively disrupted the binding interface between the ELF3 TAD domain and the 391–582 amino acid region of MED23, resulting in successful inhibition of the ELF3-MED23 PPI. This intervention led to a substantial reduction in HER2 levels and its downstream signals in the HER2-positive gastric cancer cell line. Subsequently, compound 10 induced significant apoptosis and anti-proliferative effects, demonstrating superior in vitro and in vivo anticancer activity overall. We found that the anticancer activity of compound 10 was not only restricted to trastuzumab-sensitive cases, but was also valid for trastuzumab-refractory clones. This suggests its potential as a viable therapeutic option for trastuzumab-resistant gastric cancers. In summary, compound 10 could be a novel alternative therapeutic strategy for HER2-overexpressing cancers, overcoming the limitations of trastuzumab.