Prairie Voles: Recovering from a broken heart
Despite the best efforts of my hole-digging dog, my backyard is home to rodents who are in love. Furry prairie voles spend lots of time huddled underground, usually in pairs that work together to rear their pups. If the couple is separated, even for as long as two weeks, they still remain bonded and will reunite as tight as they were before (Getz et al., 1981). These humble rodents are famous for their monogamous behavior, and have been the subject of many eye-catching headlines (Tucker, 2014; Armitage, 2015). Part of their appeal is the possibility to understand the biological basis of love, devotion, and life-long attachment – topics that seem more suited to humanities than biology departments.
Most scientific research on prairie voles has focused on how monogamous pairs are formed, particularly the role of oxytocin, the famous ‘love hormone’ (Insel and Shapiro, 1992). However, less is known about what happens when these bonds get broken; what happens when one member of the pair outlives the other? Previous behavioral studies have shown that voles exhibit signs of distress when they are separated from their partner, but eventually adapt to this loss and seek out a new connection (Harbert et al., 2020). Now, in eLife, Zoe Donaldson and colleagues from the University of Colorado Boulder and Oregon Health and Science University – including Julie Sadino as first author – report what happens to voles as they recover from a broken heart (Sadino et al., 2023).
Sadino et al. studied male voles in same-sex and opposite sex pairs that had been housed together for two weeks and then separated for 48 hours or four weeks. Using a technique called vTRAP (short for translating ribosome affinity purification), they investigated which genes are expressed in the nucleus accumbens, a part of the brain that is engaged during pair formation in mammals, including humans (Walum and Young, 2018). The pattern of genes expressed (also known as the transcriptional signature) was measured before and after voles were separated, along with their behavior to see if these two factors are coordinated together. The female voles were also prevented from becoming pregnant to control for the potentially confounding influence of co-parenting together.
The experiments revealed that male voles stably express hundreds of genes in their nucleus accumbens when living with a partner, which remained unchanged even after the pair were separated for a few days. However, while the male voles continued to prefer the company of their partner even after long periods apart, the transcriptional signature in the nucleus accumbens started to decay as the voles spent more time away from each other.
These findings suggest that genes in the brains of the voles start to alter their expression before the voles lose preference for their old mate. This means that although voles may behaviorally resume their relationship after long periods of separation, elements of their transcriptome may be less optimistic that this reunion will happen. It is tempting to speculate that the genes that begin to change expression may somehow be involved in recovering from the loss of a partner.
Furthermore, while behavioral and genomic changes in the brain occurring over different timescales is not an entirely new finding (White et al., 2002), the results of Sadino et al. do offer some clues as to how this may work at a mechanistic level. For example, genes that were upregulated in bonded males, but downregulated after a few weeks of separation, follow a pattern that suggests they may have a role in coping with loss. In contrast, another set of genes, which was initially downregulated and then upregulated after weeks of separation, may be involved in helping to prime the vole to form a new bond.
Understanding the neural basis of complex social behaviors is a hard problem. However, the work by Sadino et al. – which uses a savvy experimental design to connect genes, the brain and animal behavior – shows how it can be done. Moreover, and somewhat surprisingly, other researchers recently reported that prairie voles do not require a receptor for oxytocin in order to form social attachments (Berendzen et al., 2023). It seems that there are actually many players coordinating this complex social behavior.
An immediate task for future work is to look at brain areas other than the nucleus accumbens, which is closely associated with reward. While pair bonding is rewarding, this may be independent from the cognitive aspects of separation, such as the memory of a lost companion or the willingness to find a new partner. Another priority is to explicitly connect the transcriptional signatures identified with the formation or degradation of the pair bond using functional tests, a challenge the scientific community studying these furry lovers is no doubt going after next.
References
-
The mating system of the prairie vole, Microtus ochrogaster: field and laboratory evidence for pair-bondingBehavioral Ecology and Sociobiology 8:189–194.https://doi.org/10.1007/BF00299829
-
The neural mechanisms and circuitry of the pair bondNature Reviews Neuroscience 19:643–654.https://doi.org/10.1038/s41583-018-0072-6
-
Social regulation of gonadotropin-releasing hormoneJournal of Experimental Biology 205:2567–2581.https://doi.org/10.1242/jeb.205.17.2567
Article and author information
Author details
Publication history
Copyright
© 2023, Bell
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,357
- views
-
- 54
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.