Prairie Voles: Recovering from a broken heart
Despite the best efforts of my hole-digging dog, my backyard is home to rodents who are in love. Furry prairie voles spend lots of time huddled underground, usually in pairs that work together to rear their pups. If the couple is separated, even for as long as two weeks, they still remain bonded and will reunite as tight as they were before (Getz et al., 1981). These humble rodents are famous for their monogamous behavior, and have been the subject of many eye-catching headlines (Tucker, 2014; Armitage, 2015). Part of their appeal is the possibility to understand the biological basis of love, devotion, and life-long attachment – topics that seem more suited to humanities than biology departments.
Most scientific research on prairie voles has focused on how monogamous pairs are formed, particularly the role of oxytocin, the famous ‘love hormone’ (Insel and Shapiro, 1992). However, less is known about what happens when these bonds get broken; what happens when one member of the pair outlives the other? Previous behavioral studies have shown that voles exhibit signs of distress when they are separated from their partner, but eventually adapt to this loss and seek out a new connection (Harbert et al., 2020). Now, in eLife, Zoe Donaldson and colleagues from the University of Colorado Boulder and Oregon Health and Science University – including Julie Sadino as first author – report what happens to voles as they recover from a broken heart (Sadino et al., 2023).
Sadino et al. studied male voles in same-sex and opposite sex pairs that had been housed together for two weeks and then separated for 48 hours or four weeks. Using a technique called vTRAP (short for translating ribosome affinity purification), they investigated which genes are expressed in the nucleus accumbens, a part of the brain that is engaged during pair formation in mammals, including humans (Walum and Young, 2018). The pattern of genes expressed (also known as the transcriptional signature) was measured before and after voles were separated, along with their behavior to see if these two factors are coordinated together. The female voles were also prevented from becoming pregnant to control for the potentially confounding influence of co-parenting together.
The experiments revealed that male voles stably express hundreds of genes in their nucleus accumbens when living with a partner, which remained unchanged even after the pair were separated for a few days. However, while the male voles continued to prefer the company of their partner even after long periods apart, the transcriptional signature in the nucleus accumbens started to decay as the voles spent more time away from each other.
These findings suggest that genes in the brains of the voles start to alter their expression before the voles lose preference for their old mate. This means that although voles may behaviorally resume their relationship after long periods of separation, elements of their transcriptome may be less optimistic that this reunion will happen. It is tempting to speculate that the genes that begin to change expression may somehow be involved in recovering from the loss of a partner.
Furthermore, while behavioral and genomic changes in the brain occurring over different timescales is not an entirely new finding (White et al., 2002), the results of Sadino et al. do offer some clues as to how this may work at a mechanistic level. For example, genes that were upregulated in bonded males, but downregulated after a few weeks of separation, follow a pattern that suggests they may have a role in coping with loss. In contrast, another set of genes, which was initially downregulated and then upregulated after weeks of separation, may be involved in helping to prime the vole to form a new bond.
Understanding the neural basis of complex social behaviors is a hard problem. However, the work by Sadino et al. – which uses a savvy experimental design to connect genes, the brain and animal behavior – shows how it can be done. Moreover, and somewhat surprisingly, other researchers recently reported that prairie voles do not require a receptor for oxytocin in order to form social attachments (Berendzen et al., 2023). It seems that there are actually many players coordinating this complex social behavior.
An immediate task for future work is to look at brain areas other than the nucleus accumbens, which is closely associated with reward. While pair bonding is rewarding, this may be independent from the cognitive aspects of separation, such as the memory of a lost companion or the willingness to find a new partner. Another priority is to explicitly connect the transcriptional signatures identified with the formation or degradation of the pair bond using functional tests, a challenge the scientific community studying these furry lovers is no doubt going after next.
References
-
The mating system of the prairie vole, Microtus ochrogaster: field and laboratory evidence for pair-bondingBehavioral Ecology and Sociobiology 8:189–194.https://doi.org/10.1007/BF00299829
-
The neural mechanisms and circuitry of the pair bondNature Reviews Neuroscience 19:643–654.https://doi.org/10.1038/s41583-018-0072-6
-
Social regulation of gonadotropin-releasing hormoneJournal of Experimental Biology 205:2567–2581.https://doi.org/10.1242/jeb.205.17.2567
Article and author information
Author details
Publication history
Copyright
© 2023, Bell
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,314
- views
-
- 52
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum b-value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.
-
- Neuroscience
The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes in visual context. We trained a convolutional neural network (CNN) model on large-scale functional recordings of RGC responses to natural mouse movies, and then used this model to search in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is being debated. We confirmed experimentally that these cells indeed responded very selectively to Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our work showcases how a combination of experiments with natural stimuli and computational modelling allows discovering novel types of stimulus selectivity and identifying their potential ethological relevance.