The carboxyl-terminal sequence of PUMA binds to both anti-apoptotic proteins and membranes
Abstract
Anti-apoptotic proteins such as BCL-XL promote cell survival by sequestering pro-apoptotic BCL-2 family members, an activity that frequently contributes to tumorigenesis. Thus, the development of small-molecule inhibitors for anti-apoptotic proteins, termed BH3-mimetics, is revolutionizing how we treat cancer. BH3 mimetics kill cells by displacing sequestered pro-apoptotic proteins to initiate tumor-cell death. Recent evidence has demonstrated that in live cells the BH3-only proteins PUMA and BIM resist displacement by BH3-mimetics, while others like tBID do not. Analysis of the molecular mechanism by which PUMA resists BH3-mimetic mediated displacement from full-length anti-apoptotic proteins (BCL-XL, BCL-2, BCL-W and MCL-1) reveals that both the BH3-motif and a novel binding site within the carboxyl-terminal sequence (CTS) of PUMA contribute to binding. Together these sequences bind to anti-apoptotic proteins, which effectively 'double-bolt locks' the proteins to resist BH3-mimetic displacement. The pro-apoptotic protein BIM has also been shown to double-bolt lock to anti-apoptotic proteins however, the novel binding sequence in PUMA is unrelated to that in the CTS of BIM and functions independent of PUMA binding to membranes. Moreover, contrary to previous reports, we find that when exogenously expressed, the CTS of PUMA directs the protein primarily to the endoplasmic reticulum (ER) rather than mitochondria and that residues I175 and P180 within the CTS are required for both ER localization and BH3-mimetic resistance. Understanding how PUMA resists BH3-mimetic displacement will be useful in designing more efficacious small-molecule inhibitors of anti-apoptotic BCL-2 proteins.
Data availability
We provide the MATLAB data analysis package on DataVerse (https://doi.org/10.5683/SP3/ZKXQW8)
Article and author information
Author details
Funding
Canadian Institutes of Health Research (FDN143312)
- David W Andrews
Canada Research Chairs (Tier 1)
- David W Andrews
Canada Foundation for Innovation
- David W Andrews
Ontario Ministry of Research and Innovation
- David W Andrews
CQDM
- David W Andrews
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Pemberton et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 817
- views
-
- 145
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Cell Biology
Tumor initiation, progression and resistance to chemotherapy rely on cancer cells bypassing programmed cell death by apoptosis. We report that unlike other pro-apoptotic proteins, Bim contains two distinct binding sites for the anti-apoptotic proteins Bcl-XL and Bcl-2. These include the BH3 sequence shared with other pro-apoptotic proteins and an unexpected sequence located near the Bim carboxyl-terminus (residues 181–192). Using automated Fluorescence Lifetime Imaging Microscopy - Fluorescence Resonance Energy Transfer (FLIM-FRET) we show that the two binding interfaces enable Bim to double-bolt lock Bcl-XL and Bcl-2 in complexes resistant to displacement by BH3-mimetic drugs currently in use or being evaluated for cancer therapy. Quantifying in live cells the contributions of individual amino acids revealed that residue L185 previously thought involved in binding Bim to membranes, instead contributes to binding to anti-apoptotic proteins. This double-bolt lock mechanism has profound implications for the utility of BH3-mimetics as drugs.
-
- Biochemistry and Chemical Biology
The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.