An in silico FSHD muscle fibre for modelling DUX4 dynamics and predicting the impact of therapy

  1. Matthew V Cowley
  2. Johanna Pruller
  3. Massimo Ganassi
  4. Peter S Zammit
  5. Christopher RS Banerji  Is a corresponding author
  1. University of Bath, United Kingdom
  2. King's College London, United Kingdom
  3. The Alan Turing Institute, United Kingdom

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is an incurable myopathy linked to over-expression of the myotoxic transcription factor DUX4. Targeting DUX4 is the leading therapeutic approach, however it is only detectable in 0.1-3.8% of FSHD myonuclei. How rare DUX4 drives FSHD and the optimal anti-DUX4 strategy is unclear. We combine stochastic gene expression with compartment models of cell states, building a simulation of DUX4 expression and consequences in FSHD muscle fibres. Investigating iDUX4 myoblasts, scRNAseq and snRNAseq of FSHD muscle we estimate parameters including DUX4 mRNA degradation, transcription and translation rates and DUX4 target gene activation rates. Our model accurately recreates the distribution of DUX4 and target gene positive cells seen in scRNAseq of FSHD myocytes. Importantly we show DUX4 drives significant cell death despite expression in only 0.8% of live cells. Comparing scRNAseq of unfused FSHD myocytes to snRNAseq of fused FSHD myonuclei, we find evidence of DUX4 protein syncytial diffusion and estimate its rate via genetic algorithms. We package our model into freely available tools, to rapidly investigate consequences of anti-DUX4 therapy.

Data availability

All data generated or analysed during this study are publicly available or included in the manuscript, all code employed is published as part of our shiny app at 3 public domain URLs listed in the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Matthew V Cowley

    Department of Chemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5258-8024
  2. Johanna Pruller

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Massimo Ganassi

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3163-9707
  4. Peter S Zammit

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9562-3072
  5. Christopher RS Banerji

    The Alan Turing Institute, London, United Kingdom
    For correspondence
    cbanerji@turing.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4373-7657

Funding

EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1)

  • Matthew V Cowley

Friends of FSH Research

  • Matthew V Cowley

Muscular Dystrophy UK (19GRO-PG12-0493)

  • Johanna Pruller

FSHD Society (FSHD-Winter2021-4491649104)

  • Johanna Pruller

Medical Research Council (MR/S002472/1)

  • Massimo Ganassi

Association Francaise contre les Myopathies

  • Peter S Zammit

SOLVE FSHD

  • Massimo Ganassi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Cowley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,187
    views
  • 154
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew V Cowley
  2. Johanna Pruller
  3. Massimo Ganassi
  4. Peter S Zammit
  5. Christopher RS Banerji
(2023)
An in silico FSHD muscle fibre for modelling DUX4 dynamics and predicting the impact of therapy
eLife 12:e88345.
https://doi.org/10.7554/eLife.88345

Share this article

https://doi.org/10.7554/eLife.88345

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.