Innate Behavior: A groom with a view

Mapping mouse grooming episodes to neural activity shows that striatal cells deep in the brain collectively represent key aspects of self-grooming.
  1. Jeffrey E Markowitz  Is a corresponding author
  1. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States

Are you sitting still right now, or are you moving? Occasionally, our brains compel us to scratch an itch, comb our fingers through our hair, or stroke our chin without even thinking about it. These actions may seem inconsequential to us, but they are examples of a unique type of behavior called self-grooming. Found in species spanning most of the animal kingdom – from monkeys to prairie voles and even fruit flies – self-grooming can serve as a powerful lens for revealing what the brains of monkeys and fruit flies might have in common.

Self-grooming is commonly defined as a behavior used to care for the outside of the body (Spruijt et al., 1992). While the particulars of a mouse groom may look dramatically different to those of a fruit fly, they both involve a highly stereotyped sequence of behaviors, such as rubbing the digits together followed by touching the face in elliptical strokes (Fentress and Stilwell, 1973; Szebenyi, 1969). This suggests that the brains of multiple species may share a common neural mechanism that controls how behaviors are organized in time, or ‘sequenced’. A single brain circuit – the basal ganglia, a conserved set of neurons deep within the brain – appears to sequence these actions. Pioneering work showed that introducing lesions or other perturbations to the striatum – which is part of the basal ganglia – disrupts the stereotypical sequence in which self-grooming behaviors occur, confirming that the striatum has a key role in the process (Berridge and Whishaw, 1992; Cromwell and Berridge, 1996; Van den Bercken and Cools, 1982). Recordings from striatal neurons showed that they responded during different phases of grooming episodes (Aldridge and Berridge, 1998). However, it remained unclear how the neurons within the striatum work together to produce the sequence of self-grooming.

Now, in eLife, Ann Kennedy and Yevgenia Kozorovitskiy of Northwestern University and colleagues – including Samuel Minkowicz as first author – report a new method for identifying grooming episodes in video footage, and then show that discrete groups of striatal neurons show activity at the beginning and end of such episodes in mice, as well as throughout episodes (Minkowicz et al., 2023).

Historically, grooming episodes were identified by hand-labeling high-speed videos (Fentress and Stilwell, 1973), which was time-consuming and also limited the scale of studies. Complementing recent developments in automated identification of grooming episodes from raw video footage (Geuther et al., 2021), Minkowicz et al. developed a semi-automated technique to algorithmically identify mouse grooming episodes based on the movement of key body parts in 3D. Detecting certain movements – such as a mouse moving its paws close to its nose – helped to isolate grooming episodes from over 100 hours of video footage. Furthermore, the code used by Minkowicz et al. is open-source, which will allow the scientific community to benefit from this new method.

In addition to capturing video footage, Minkowicz et al. used probes embedded in the striatum of mice to record neuronal activity and investigate how neurons in the striatum collectively represent grooming. The recordings showed that when a mouse is relatively still, striatal cells fire sparsely and randomly. However, during a grooming episode, the cells appear to coalesce into clusters of neurons that fire simultaneously, in line with recent recordings of striatal neurons during other types of movement (Klaus et al., 2017; Barbera et al., 2016). These ‘ensembles’ do not represent grooms with perfect fidelity – if a cell fires during one bout of grooming, it is not guaranteed to fire during the next. However, through studying a large number of grooms, it was clear that ensembles of striatal neurons become active at key stages of grooming episodes such as the beginning and the end, or for the duration of the episode (Figure 1).

Striatal activity collectively represents key features of mouse grooming.

Mouse grooming episodes (depicted within box) involve certain behaviors such as rubbing the eyes and ears with paws. By simultaneously recording mouse behavior and neural activity in the striatum – a key brain structure known to be involved in sequencing behavior – Minkowicz et al. showed that the activity of striatal cells is orchestrated to represent the important timepoints in a grooming sequence: when grooming starts (green); when grooming stops (purple); at both the start and end of the grooming episode (‘border’, grey) and for the duration of the episode (blue).

Image credit: Mouse cartoons created with BioRender.

The findings suggest that grooming, and perhaps other spontaneous behaviors, are represented by small ensembles of striatal neurons as discrete, unitary objects that are strung together to form sequences. This is potentially at odds with other work that has found that the striatum represents continuous aspects of movement like velocity and vigor (Panigrahi et al., 2015; Dhawale et al., 2021), although these possibilities are not mutually exclusive. Moving forward, new experimental and computational approaches will be required to resolve the question at the heart of basal ganglia function: does it assemble behavioral sequences from a set of discrete puzzle pieces, or do sequences emerge through the direct control of continuous aspects of motor control?

References

Article and author information

Author details

  1. Jeffrey E Markowitz

    Jeffrey E Markowitz is in the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, United States

    For correspondence
    jeffrey.markowitz@bme.gatech.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-1937

Publication history

  1. Version of Record published:

Copyright

© 2023, Markowitz

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 869
    views
  • 59
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey E Markowitz
(2023)
Innate Behavior: A groom with a view
eLife 12:e88595.
https://doi.org/10.7554/eLife.88595
  1. Further reading

Further reading

    1. Neuroscience
    Yujiro Umezaki, Sergio Hidalgo ... Fumika Hamada
    Research Article

    Hungry animals consistently show a desire to obtain food. Even a brief sensory detection of food can trigger bursts of physiological and behavioral changes. However, the underlying mechanisms by which the sensation of food triggers the acute behavioral response remain elusive. We have previously shown in Drosophila that hunger drives a preference for low temperature. Because Drosophila is a small ectotherm, a preference for low temperature implies a low body temperature and a low metabolic rate. Here, we show that taste-sensing triggers a switch from a low to a high temperature preference in hungry flies. We show that taste stimulation by artificial sweeteners or optogenetics triggers an acute warm preference, but is not sufficient to reach the fed state. Instead, nutrient intake is required to reach the fed state. The data suggest that starvation recovery is controlled by two components: taste-evoked and nutrient-induced warm preferences, and that taste and nutrient quality play distinct roles in starvation recovery. Animals are motivated to eat based on time of day or hunger. We found that clock genes and hunger signals profoundly control the taste-evoked warm preferences. Thus, our data suggest that the taste-evoked response is one of the critical layers of regulatory mechanisms representing internal energy homeostasis and metabolism.

    1. Neuroscience
    Christoph Arne Wittkamp, Maren-Isabel Wolf, Michael Rose
    Research Article

    Pain is heavily modulated by expectations. Whereas the integration of expectations with sensory information has been examined in some detail, little is known about how positive and negative expectations are generated and their neural dynamics from generation over anticipation to the integration with sensory information. The present preregistered study employed a novel paradigm to induce positive and negative expectations on a trial-by-trial basis and examined the neural mechanisms using combined EEG-fMRI measurements (n=50). We observed substantially different neural representations between the anticipatory and the actual pain period. In the anticipation phase i.e., before the nociceptive input, the insular cortex, dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) showed increased activity for directed expectations regardless of their valence. Interestingly, a differentiation between positive and negative expectations within the majority of areas only occurred after the arrival of nociceptive information. FMRI-informed EEG analyses could reliably track the temporal sequence of processing showing an early effect in the DLPFC, followed by the anterior insula and late effects in the ACC. The observed effects indicate the involvement of different expectation-related subprocesses, including the transformation of visual information into a value signal that is maintained and differentiated according to its valence only during stimulus processing.