Development: The hidden depths of zebrafish skin
The largest organ in the vertebrate body, the skin, performs a wide range of roles such as protecting against infection, sensing the environment, and supporting essential appendages such as hair, feathers and scales. It is also beautifully complex.
In its postembryonic form, vertebrate skin is formed of three layers – the epidermis (the outermost layer), the dermis and the hypodermis – that contain a range of different cell types, each dedicated to a specific function. In zebrafish, for example, some cells create the proteins required for scales to harden and become calcified, while others produce the pigments that give the species its delicate stripe pattern. Despite extensive studies over the past few decades, researchers still do not fully understand how this complexity arises during development. Now, in eLife, David Parichy and colleagues – including Andrew Aman and Lauren Saunders as joint first authors – report that they have classified all the major cell types in zebrafish skin, identified a cell type which was previously unknown, and dissected some of the signalling networks that are essential for development (Aman et al., 2023).
The researchers – who are based at the University of Virginia, the University of Washington and the National Human Genome Research Institute – started by using single-cell transcriptomic analysis to study 35,114 post-embryonic zebrafish skin cells. This approach allowed Aman et al. to establish the ‘RNA profile’ of each individual cell, showing which genes it expresses, and at what level, at a given time.
One of the most interesting findings to emerge from this work was the identification of a group of epidermal cells which expressed genes coding for proteins that are necessary for the formation of enamel (Figure 1). As human cells known as ameloblasts secrete some of the same proteins to create the enamel of our teeth, this result suggests that zebrafish scales could be an alternative model in which to study ameloblast biology in vivo. Meanwhile, it also highlights an ancient connection between fish scales and human teeth, one that may date back 450 million years to the time when the first fish species with calcified outer layers emerged during the Ordovician Period (Sire et al., 2009). In fact, some evidence suggests that teeth may have evolved from certain types of primitive scales (Gillis et al., 2017).
To better understand the molecular mechanisms underpinning skin development, Aman et al. applied their approach to cells from various zebrafish mutants (Harris et al., 2008; Lang et al., 2009; McMenamin et al., 2014). In animals with scale defects, the analyses revealed several signalling pathways that act in turn to regulate scale-forming cells at the base of the epidermis. Further in vivo experiments helped to pinpoint key molecular actors in this process, highlighting a specific signalling ligand called Fgf20a, which is also involved in the development and regeneration of scales. Piecing together the RNA profiles of zebrafish mutants with defective pigment development, on the other hand, provided convincing evidence that the hypodermis is not in fact a mere structural layer. Instead, it is essential for pigment cell development and adult stripe pattern formation.
Finally, Aman et al. examined the role of the thyroid hormone on skin development, as this chemical messenger has been implicated in a range of human skin conditions. To do so, they examined the RNA profiles of skin cells from zebrafish in which the thyroid gland had been removed (McMenamin et al., 2014). This analysis revealed several genes whose expression is potentially regulated by this hormone, including a gene called pdgfaa. Further in vivo work showed that over-expressing this gene in fish with low levels of thyroid hormone partially re-established a normal stratification of the dermis, but did not alter how scales were created. Together, these findings should open new opportunities for understanding and treating human skin diseases.
This work illustrates how single-cell transcriptomic profiling can detect rare cell types, infer cell fate trajectories, and identify relevant signalling networks. On its own, however, this method may fall short of capturing the exquisite details of skin development, such as how differentiated skin cells influence the behavior of neighbouring basal stem cells, the way that appendages instruct the growth of nerve projections and blood vessels, or the fact that tension can trigger skin cells to divide without replicating their DNA (Mesa et al., 2018; Ning et al., 2021; Rasmussen et al., 2018; Chan et al., 2022). Only studies in live animals can investigate the role of these cell-to-cell interactions and dynamics in skin development, emphasising a need for multifaceted approaches.
Zebrafish skin may seem less sophisticated than ours at first glance, but Aman et al. have undoubtedly demonstrated that there is much to discover beneath its surface. Developmental biologists can glean valuable insights from looking into it more closely. Given the evolutionary connection between teeth and scales, and now the shared presence of ameloblast-like cells in zebrafish and humans, it may even become possible to unravel why scales, but not human teeth, can regrow throughout life. While it is probably a wild guess, it is fascinating to imagine that one day we may be able to regenerate human teeth thanks to findings made in a toothless little fish.
References
Article and author information
Author details
Publication history
Copyright
© 2023, Tan et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,203
- views
-
- 105
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Developmental Biology
Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.
-
- Developmental Biology
Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.