Saccharomyces cerevisiae DJ-1 paralogs maintain genome integrity through glycation repair of nucleic acids and proteins

  1. Gautam Susarla
  2. Priyanka Kataria
  3. Amrita Kundu
  4. Patrick D'Silva  Is a corresponding author
  1. Indian Institute of Science Bangalore, India

Abstract

Reactive carbonyl species (RCS) such as methylglyoxal and glyoxal are potent glycolytic intermediates that extensively damage cellular biomolecules leading to genetic aberration and protein misfolding. Hence, RCS levels are crucial indicators in the progression of various pathological diseases. Besides the glyoxalase system, emerging studies report highly conserved DJ-1 superfamily proteins as critical regulators of RCS. DJ-1 superfamily proteins, including the human DJ-1, a genetic determinant of Parkinson's disease, possess diverse physiological functions paramount for combating multiple stressors. Although S. cerevisiae retains four DJ-1 orthologs (Hsp31, Hsp32, Hsp33, and Hsp34), their physiological relevance and collective requirement remain obscure. Here, we report for the first time that the yeast DJ-1 orthologs function as novel enzymes involved in the preferential scavenge of glyoxal and methylglyoxal, toxic metabolites, and genotoxic agents. Their collective loss stimulates chronic glycation of the proteome, and nucleic acids, inducing spectrum of genetic mutations and reduced mRNA translational efficiency. Furthermore, the Hsp31 paralogs efficiently repair severely glycated macromolecules derived from carbonyl modifications. Also, their absence elevates DNA damage response, making them vulnerable to various genotoxins. Interestingly, yeast DJ-1 orthologs preserve functional mitochondrial content, maintain ATP levels, and redistribute into mitochondria to alleviate the glycation damage of macromolecules. Together, our study uncovers a novel glycation repair pathway in S. cerevisiae and a possible neuroprotective mechanism of how hDJ-1 confers mitochondrial health during glycation toxicity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all the Figures and Figure Supplements

Article and author information

Author details

  1. Gautam Susarla

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Priyanka Kataria

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Amrita Kundu

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1499-7564
  4. Patrick D'Silva

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    patrick@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1619-5311

Funding

Science and Engineering Research Board (CRG/2018/001988)

  • Patrick D'Silva

Department of Science and Technology, Ministry of Science and Technology, India (SR/FST/LSII045/2016-G)

  • Patrick D'Silva

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR27952/IN/22/212/2018)

  • Patrick D'Silva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Agnieszka Chacinska, IMol Polish Academy of Sciences, Poland

Version history

  1. Preprint posted: September 23, 2022 (view preprint)
  2. Received: April 24, 2023
  3. Accepted: August 4, 2023
  4. Accepted Manuscript published: August 7, 2023 (version 1)
  5. Version of Record published: August 16, 2023 (version 2)

Copyright

© 2023, Susarla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 810
    views
  • 122
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gautam Susarla
  2. Priyanka Kataria
  3. Amrita Kundu
  4. Patrick D'Silva
(2023)
Saccharomyces cerevisiae DJ-1 paralogs maintain genome integrity through glycation repair of nucleic acids and proteins
eLife 12:e88875.
https://doi.org/10.7554/eLife.88875

Share this article

https://doi.org/10.7554/eLife.88875

Further reading

    1. Biochemistry and Chemical Biology
    Laurie Peverini, Sophie Shi ... Pierre-Jean Corringer
    Research Article

    The serotonin-gated ion channel (5-HT3R) mediates excitatory neuronal communication in the gut and the brain. It is the target for setrons, a class of competitive antagonists widely used as antiemetics, and is involved in several neurological diseases. Cryo-electron microscopy (cryo-EM) of the 5-HT3R in complex with serotonin or setrons revealed that the protein has access to a wide conformational landscape. However, assigning known high-resolution structures to actual states contributing to the physiological response remains a challenge. In the present study, we used voltage-clamp fluorometry (VCF) to measure simultaneously, for 5-HT3R expressed at a cell membrane, conformational changes by fluorescence and channel opening by electrophysiology. Four positions identified by mutational screening report motions around and outside the serotonin-binding site through incorporation of cysteine-tethered rhodamine dyes with or without a nearby quenching tryptophan. VCF recordings show that the 5-HT3R has access to four families of conformations endowed with distinct fluorescence signatures: ‘resting-like’ without ligand, ‘inhibited-like’ with setrons, ‘pre-active-like’ with partial agonists, and ‘active-like’ (open channel) with partial and strong agonists. Data are remarkably consistent with cryo-EM structures, the fluorescence partners matching respectively apo, setron-bound, 5-HT bound-closed, and 5-HT-bound-open conformations. Data show that strong agonists promote a concerted motion of all fluorescently labeled sensors during activation, while partial agonists, especially when loss-of-function mutations are engineered, stabilize both active and pre-active conformations. In conclusion, VCF, though the monitoring of electrophysiologically silent conformational changes, illuminates allosteric mechanisms contributing to signal transduction and their differential regulation by important classes of physiological and clinical effectors.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jiabin Pan, Rui Zhou ... Xiang-dong Li
    Research Article

    Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.