Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure

  1. Tylor R Lewis  Is a corresponding author
  2. Sebastien Phan
  3. Carson M Castillo
  4. Keun-Young Kim
  5. Kelsey Coppenrath
  6. William Thomas
  7. Ying Hao
  8. Nikolai P Skiba
  9. Marko E Horb
  10. Mark H Ellisman
  11. Vadim Y Arshavsky  Is a corresponding author
  1. Duke University, United States
  2. University of California, San Diego, United States
  3. Marine Biological Laboratory, United States

Abstract

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.

Data availability

All data generated or analyzed for this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Tylor R Lewis

    Department of Ophthalmology, Duke University, Durham, United States
    For correspondence
    tylor.lewis@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6832-7972
  2. Sebastien Phan

    National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carson M Castillo

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keun-Young Kim

    National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kelsey Coppenrath

    Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. William Thomas

    Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ying Hao

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nikolai P Skiba

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marko E Horb

    Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark H Ellisman

    National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vadim Y Arshavsky

    Department of Ophthalmology, Duke University, Durham, United States
    For correspondence
    vadim.arshavsky@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8394-3650

Funding

National Institutes of Health (EY030451)

  • Vadim Y Arshavsky

National Institutes of Health (EY005722)

  • Vadim Y Arshavsky

National Institutes of Health (EY033763)

  • Tylor R Lewis

National Institutes of Health (OD010997)

  • Marko E Horb

National Institutes of Health (OD030008)

  • Marko E Horb

Research to Prevent Blindness (Unrestricted Award)

  • Vadim Y Arshavsky

National Institutes of Health (NS120055)

  • Mark H Ellisman

National Institutes of Health (GM82949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal maintenance and experiments were approved by the Institutional Animal Care and Use Committees at Duke (Durham, NC; protocol #A184-22-10) and the Marine Biological Laboratory (Woods Hole, MA; protocol #22-29).

Copyright

© 2023, Lewis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 593
    views
  • 120
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tylor R Lewis
  2. Sebastien Phan
  3. Carson M Castillo
  4. Keun-Young Kim
  5. Kelsey Coppenrath
  6. William Thomas
  7. Ying Hao
  8. Nikolai P Skiba
  9. Marko E Horb
  10. Mark H Ellisman
  11. Vadim Y Arshavsky
(2023)
Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure
eLife 12:e89160.
https://doi.org/10.7554/eLife.89160

Share this article

https://doi.org/10.7554/eLife.89160

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.