High-content microscopy reveals a morphological signature of bortezomib resistance

  1. Megan E Kelley
  2. Adi Y Berman
  3. David R Stirling
  4. Beth A Cimini
  5. Yu Han
  6. Shantanu Singh
  7. Anne E Carpenter  Is a corresponding author
  8. Tarun M Kapoor  Is a corresponding author
  9. Gregory P Way  Is a corresponding author
  1. Rockefeller University, United States
  2. Broad Institute, United States
  3. University of Colorado Anschutz Medical Campus, United States

Abstract

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.

Data availability

All data generated during this study are provided in the dataset cpg0028-kelley-resistance, available in the Cell Painting Gallery on the Registry of Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/). Processed data, source data files, and code to reproduce this analysis are available at https://github.com/broadinstitute/profiling-resistance-mechanisms (Way et al., 2023).

The following data sets were generated

Article and author information

Author details

  1. Megan E Kelley

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0251-5054
  2. Adi Y Berman

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David R Stirling

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6802-4103
  4. Beth A Cimini

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9640-9318
  5. Yu Han

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shantanu Singh

    Imaging Platform, Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3150-3025
  7. Anne E Carpenter

    Imaging Platform, Broad Institute, Cambridge, United States
    For correspondence
    anne@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8261
  8. Tarun M Kapoor

    Laboratory of Chemistry and Cell Biology, Rockefeller University, New York City, United States
    For correspondence
    kapoor@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Gregory P Way

    Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    Gregory.way@cuanschutz.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0503-9348

Funding

Starr Cancer Consortium (112-0039)

  • Anne E Carpenter
  • Tarun M Kapoor

National Institutes of Health (R35 GM122547)

  • Anne E Carpenter

National Institutes of Health (R35 GM130234)

  • Tarun M Kapoor

National Institutes of Health (T32 GM066699)

  • Megan E Kelley

National Institutes of Health (T32 GM115327)

  • Adi Y Berman

National Science Foundation (NSF GRFP 2019272977)

  • Adi Y Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Kelley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 970
    views
  • 157
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan E Kelley
  2. Adi Y Berman
  3. David R Stirling
  4. Beth A Cimini
  5. Yu Han
  6. Shantanu Singh
  7. Anne E Carpenter
  8. Tarun M Kapoor
  9. Gregory P Way
(2023)
High-content microscopy reveals a morphological signature of bortezomib resistance
eLife 12:e91362.
https://doi.org/10.7554/eLife.91362

Share this article

https://doi.org/10.7554/eLife.91362

Further reading

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.

    1. Cancer Biology
    2. Genetics and Genomics
    Li Min, Fanqin Bu ... Shutian Zhang
    Research Article

    It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.