Increase of cell surface vimentin is associated with vimentin network disruption and subsequent stress-induced premature senescence in human chondrocytes
Abstract
Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilage homeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis (OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes are incompletely understood. Here, we provide evidence that disruption of the intracellular vimentin network and consequent phenotypical alteration in human chondrocytes results in an externalization of the intermediate filament. The presence of so-called cell surface vimentin (CSV) on chondrocytes was associated with the severity of tissue degeneration in clinical OA samples and was enhanced after mechanical injury of cartilage tissue. By means of a doxorubicine-based in vitro model of stress-induced premature senescence (SIPS), we could confirm the connection between cellular senescence and amount of CSV. Although siRNA-mediated silencing of CDKN2A clearly reduced the senescent phenotype as well as CSV levels of human chondrocytes, cellular senescence could not be completely reversed. Interestingly, knockdown of vimentin resulted in a SIPS-like phenotype and consequently increased CSV. Therefore, we concluded that the integrity of the intracellular vimentin network is crucial to maintain cellular function in chondrocytes. This assumption could be confirmed by chemically-induced collapse of the vimentin network, which resulted in cellular stress and enhanced CSV expression. Regarding its biological function, CSV was found to be associated with enhanced chondrocyte adhesion and plasticity. While osteogenic capacities seemed to be enhanced in chondrocytes expressing high levels of CSV, the chondrogenic potential was clearly compromised. Overall, our study reinforces the importance of the vimentin network in maintenance of the chondrogenic phenotype and introduces CSV as a novel membrane-bound marker of dysfunctional chondrocytes.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting file.
Article and author information
Author details
Funding
European Social Fund
- Jana Riegger
Ministry of Science, Research, and Arts Baden-Württemberg
- Jana Riegger
University of Ulm
- Jana Riegger
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Riegger & Brenner
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 871
- views
-
- 175
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.