Asymmetric framework motion of TCRαβ controls load-dependent peptide discrimination

  1. Ana Cristina Chang-Gonzalez
  2. Robert J Mallis
  3. Matthew J Lang
  4. Ellis L Reinherz
  5. Wonmuk Hwang  Is a corresponding author
  1. Texas A&M University, United States
  2. Dana-Farber Cancer Institute, United States
  3. Vanderbilt University, United States

Abstract

Mechanical force is critical for the interaction between an αβT cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and β chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the Cβ FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCRαβ-pMHC agonist and antagonist complexes.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Sample analysis scripts are available on GitHub: https://github.com/hwm2746/a6tcr_anal_md/tree/main

Article and author information

Author details

  1. Ana Cristina Chang-Gonzalez

    Department of Biomedical Engineering, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1517-4172
  2. Robert J Mallis

    Laboratory of Immunobio, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2087-9468
  3. Matthew J Lang

    Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ellis L Reinherz

    Laboratory of Immunobio, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wonmuk Hwang

    Department of Biomedical Engineering, Texas A&M University, College Station, United States
    For correspondence
    hwm@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7514-3186

Funding

US National Institutes of Health (P01AI143565)

  • Robert J Mallis
  • Matthew J Lang
  • Ellis L Reinherz
  • Wonmuk Hwang

US National Institutes of Health (R01AI136301)

  • Matthew J Lang
  • Ellis L Reinherz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Chang-Gonzalez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 707
    views
  • 93
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Cristina Chang-Gonzalez
  2. Robert J Mallis
  3. Matthew J Lang
  4. Ellis L Reinherz
  5. Wonmuk Hwang
(2024)
Asymmetric framework motion of TCRαβ controls load-dependent peptide discrimination
eLife 13:e91881.
https://doi.org/10.7554/eLife.91881

Share this article

https://doi.org/10.7554/eLife.91881

Further reading

    1. Immunology and Inflammation
    Troy Burtchett, Neal Hammer
    Insight

    Specific host factors, such as immune cell activity, sex hormones and microbiota composition, influence the ability of Staphylococcus aureus bacteria to colonize the gut of mice.

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.