Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments

Abstract

Adaptation is driven by the selection for beneficial mutations that provide a fitness advantage in the specific environment in which a population is evolving. However, environments are rarely constant or predictable. When an organism well adapted to one environment finds itself in another, pleiotropic effects of mutations that made it well adapted to its former environment will affect its success. To better understand such pleiotropic effects, we evolved both haploid and diploid barcoded budding yeast populations in multiple environments, isolated adaptive clones, and then determined the fitness effects of adaptive mutations in “non-home” environments in which they were not selected. We find that pleiotropy is common, with most adaptive evolved lineages showing fitness effects in non-home environments. Consistent with other studies, we find that these pleiotropic effects are unpredictable: they are beneficial in some environments and deleterious in others. However, we do find that lineages with adaptive mutations in the same genes tend to show similar pleiotropic effects. We also find that ploidy influences the observed adaptive mutational spectra in a condition-specific fashion. In some conditions, haploids and diploids are selected with adaptive mutations in identical genes, while in others they accumulate mutations in almost completely disjoint sets of genes.

Data availability

All underlying sequencing data for both barcode sequencing and whole genome sequencing are available from the short read archive (SRA) under accession number PRJNA912754.

The following data sets were generated

Article and author information

Author details

  1. Vivian Chen

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0007-6205-7853
  2. Milo S Johnson

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-2494
  3. Lucas Hérissant

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0065-5608
  4. Parris T Humphrey

    Department of Organismic and Evolutionary Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David C Yuan

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuping Li

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Atish Agarwala

    Department of Physics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samuel B Hoelscher

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dmitri A Petrov

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3664-9130
  10. Michael M Desai

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150
  11. Gavin Sherlock

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    gsherloc@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1692-4983

Funding

National Institute of General Medical Sciences (R35 GM131824)

  • Gavin Sherlock

National Institute of General Medical Sciences (R35 GM118165)

  • Dmitri A Petrov

National Institute of General Medical Sciences (R01 GM104239)

  • Michael M Desai

National Science Foundation (PHY-1914916)

  • Michael M Desai

National Science Foundation (DMS-1764269)

  • Michael M Desai

National Science Foundation

  • Milo S Johnson

National Institute of General Medical Sciences (R01 GM110275)

  • Gavin Sherlock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Biology Tübingen, Germany

Version history

  1. Preprint posted: March 1, 2023 (view preprint)
  2. Received: September 21, 2023
  3. Accepted: September 27, 2023
  4. Accepted Manuscript published: October 20, 2023 (version 1)
  5. Version of Record published: November 7, 2023 (version 2)
  6. Version of Record updated: November 8, 2023 (version 3)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 796
    views
  • 150
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vivian Chen
  2. Milo S Johnson
  3. Lucas Hérissant
  4. Parris T Humphrey
  5. David C Yuan
  6. Yuping Li
  7. Atish Agarwala
  8. Samuel B Hoelscher
  9. Dmitri A Petrov
  10. Michael M Desai
  11. Gavin Sherlock
(2023)
Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments
eLife 12:e92899.
https://doi.org/10.7554/eLife.92899

Share this article

https://doi.org/10.7554/eLife.92899

Further reading

    1. Ecology
    2. Evolutionary Biology
    Chunxiao Li, Tao Deng ... Shiqi Wang
    Research Article

    The long-trunked elephantids underwent a significant evolutionary stage characterized by an exceptionally elongated mandible. The initial elongation and subsequent regression of the long mandible, along with its co-evolution with the trunk, present an intriguing issue that remains incompletely understood. Through comparative functional and eco-morphological investigations, as well as feeding preference analysis, we reconstructed the feeding behavior of major groups of longirostrine elephantiforms. In the Platybelodon clade, the rapid evolutionary changes observed in the narial region, strongly correlated with mandible and tusk characteristics, suggest a crucial evolutionary transition where feeding function shifted from the mandible to the trunk, allowing proboscideans to expand their niches to more open regions. This functional shift further resulted in elephantids relying solely on their trunks for feeding. Our research provides insights into how unique environmental pressures shape the extreme evolution of organs, particularly in large mammals that developed various peculiar adaptations during the late Cenozoic global cooling trends.

    1. Evolutionary Biology
    Tian Yue, Yongbo Guo ... Bing Su
    Research Article

    Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.