Insulin Release: Synchronizing beta cells in the pancreas

The secretion of insulin from the pancreas relies on both gap junctions and subpopulations of beta cells with specific intrinsic properties.
  1. Bradford E Peercy  Is a corresponding author
  2. David J Hodson  Is a corresponding author
  1. Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), United States
  2. Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, United Kingdom

The amount of glucose in the blood is controlled by the hormone insulin, which is released by the pancreas when glucose levels get too high. The hormone is released from beta cells that are organized into spheroid structures within the pancreas known as islets of Langerhans. Like muscle cells in the heart, beta cells are electrically coupled together by gap junctions, and this coupling enables the cells within the islet to coordinate or synchronize their behavior and release insulin in a pulsatile manner.

Gap junctions are thought to be critical for controlling the dynamics of the islets and, hence, insulin secretion. Indeed, mice lacking gap junctions are unable to release insulin in pulses (Head et al., 2012). Gap junction (or electrical) coupling between beta cells has also been shown to weaken with age as insulin secretion declines and individuals become more susceptible to type 2 diabetes (Westacott et al., 2017a).

Recent studies have shown that beta cells can be separated into subpopulations based on their genetic makeup, the proteins they make, and how they behave (Benninger and Hodson, 2018). Some of these subgroups have a greater influence over islet dynamics than others (Stožer et al., 2013; Johnston et al., 2016; Salem et al., 2019; Westacott et al., 2017b; Nasteska et al., 2021). When these cells are disrupted – either by optogenetics or gene overexpression – islet function and insulin secretion decline, reminiscent of what occurs during aging and type 2 diabetes.

These subpopulations of beta cells are not physically connected and instead rely on their intrinsic properties to influence islet dynamics (Johnston et al., 2016; Westacott et al., 2017b; Nasteska et al., 2021). However, the cells in these subpopulations are too few in number to influence electrical coupling by gap junctions (Peercy and Sherman, 2022). Additionally, gap junctions alone cannot explain the activity patterns of the subpopulations identified, or their influence over islet function. So how do these two mechanisms work together to control blood glucose levels? Now, in eLife, Richard Benninger and co-workers – including Jennifer Briggs as first author – report new findings that shine some light on the relationship between beta cell subpopulations and gap junctions (Briggs et al., 2023).

The researchers (who are based at the University of Colorado Anschutz Medical Campus and the University of Birmingham) found that the enzyme glucokinase – which senses changes in blood glucose levels – displayed elevated levels of activity in a subpopulation of beta cells. This resulted in heightened metabolism due to glucokinase breaking down more molecules of glucose to generate the high levels of ATP (usable energy) versus ADP (used energy) required for insulin release, reflecting previous findings (Johnston et al., 2016; Westacott et al., 2017b).

Notably, beta cells were more likely to synchronize their response to glucose if their metabolic activity was similar; moreover, changing these intrinsic properties led to a loss of the beta cell subpopulation. Reducing gap junction coupling also did not stop the beta cells within the islet from synchronizing their activity. It did, however, make them much weaker at transmitting electrical signals across the islet.

It has long been thought that gap junctions are the major driver of synchronized beta cell activity, and that their disruption during diabetes leads to impaired insulin secretion. However, the findings of Briggs et al. suggest that gap junctions are just one piece of the jigsaw, and that cells with similar intrinsic properties – such as metabolic actvity – also drive islet dynamics (Figure 1).

The role of gap junctions and beta cell subpopulations in insulin release.

Within the pancreas, insulin-secreting beta cells are arranged into islets, and are physically coupled together by gap junctions (dark gray rectangles/lines). In the current model (left), gap junctions (pink) spread electrical currents (mV) between beta cells within the islet, resulting in the population displaying similar oscillations of electrical activity (right hand graph, matching waves highlighted in blue) and synchronizing their insulin release. Within the islet are also subpopulations of beta cells with specific intrinsic properties (shaded in dark grey; lower panel), such as higher levels of metabolic activity or producing more usable energy (ATP) than used energy (ADP). These beta cell subpopulations also contribute to coordinated beta cell activity, but how exactly was largely unknown. In the updated model proposed by Briggs et al. (right), the beta subpopulations and gap junctions work together to control islet dynamics. The increased metabolism of the beta subpopulations makes it easier for gap junctions to spread electrical currents across the islet. Disrupting either of these mechanisms (represented by an X symbol) makes it harder for beta cells within the islet to fully synchronize their electrical activity (left hand graph), leading to a decline in insulin secretion. mV = membrane potential.

Image credit: Figure created with BioRender.com.

So which mechanism fails first during diabetes: gap junctions or intrinsic cellular properties? Small decreases in the number of gap junctions and their associated electrical signalling, which occurs during diabetes, would make it much harder for beta cells within a subpopulation to synchronize. On the other hand, small changes in intrinsic cellular properties might render gap junction synchronization much less effective. Complicating matters further, loss of gap junction coupling likely influences the intrinsic properties of beta cells and vice versa. Therefore, the disrupted islet dynamics and impaired insulin release observed in patients with diabetes is probably due in part to both mechanisms failing simultaneously.

The study by Briggs et al. shows that no single mechanism drives synchronized beta cell activity: rather, subpopulations and gap junctions come together to shape islet behaviour. Further computational modelling could help tease out – or even predict – how the critical relationship between beta cell subpopulations and gap junctions influences insulin release. Further experimental work is also warranted to understand how the interplay between beta cell subpopulations and gap junctions is altered during diabetes.

References

Article and author information

Author details

  1. Bradford E Peercy

    Bradford E Peercy is in the Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), Baltimore, United States

    For correspondence
    bpeercy@umbc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8597-2508
  2. David J Hodson

    David J Hodson is in the Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom

    For correspondence
    david.hodson@ocdem.ox.ac.uk
    Competing interests
    has filed patents related to diabetes therapy; receives licensing revenue from Celtarys Research for the provision of chemical probes
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8641-8568

Publication history

  1. Version of Record published:

Copyright

© 2024, Peercy and Hodson

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,301
    views
  • 143
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bradford E Peercy
  2. David J Hodson
(2024)
Insulin Release: Synchronizing beta cells in the pancreas
eLife 13:e95103.
https://doi.org/10.7554/eLife.95103

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.