Insulin Release: Synchronizing beta cells in the pancreas
The amount of glucose in the blood is controlled by the hormone insulin, which is released by the pancreas when glucose levels get too high. The hormone is released from beta cells that are organized into spheroid structures within the pancreas known as islets of Langerhans. Like muscle cells in the heart, beta cells are electrically coupled together by gap junctions, and this coupling enables the cells within the islet to coordinate or synchronize their behavior and release insulin in a pulsatile manner.
Gap junctions are thought to be critical for controlling the dynamics of the islets and, hence, insulin secretion. Indeed, mice lacking gap junctions are unable to release insulin in pulses (Head et al., 2012). Gap junction (or electrical) coupling between beta cells has also been shown to weaken with age as insulin secretion declines and individuals become more susceptible to type 2 diabetes (Westacott et al., 2017a).
Recent studies have shown that beta cells can be separated into subpopulations based on their genetic makeup, the proteins they make, and how they behave (Benninger and Hodson, 2018). Some of these subgroups have a greater influence over islet dynamics than others (Stožer et al., 2013; Johnston et al., 2016; Salem et al., 2019; Westacott et al., 2017b; Nasteska et al., 2021). When these cells are disrupted – either by optogenetics or gene overexpression – islet function and insulin secretion decline, reminiscent of what occurs during aging and type 2 diabetes.
These subpopulations of beta cells are not physically connected and instead rely on their intrinsic properties to influence islet dynamics (Johnston et al., 2016; Westacott et al., 2017b; Nasteska et al., 2021). However, the cells in these subpopulations are too few in number to influence electrical coupling by gap junctions (Peercy and Sherman, 2022). Additionally, gap junctions alone cannot explain the activity patterns of the subpopulations identified, or their influence over islet function. So how do these two mechanisms work together to control blood glucose levels? Now, in eLife, Richard Benninger and co-workers – including Jennifer Briggs as first author – report new findings that shine some light on the relationship between beta cell subpopulations and gap junctions (Briggs et al., 2023).
The researchers (who are based at the University of Colorado Anschutz Medical Campus and the University of Birmingham) found that the enzyme glucokinase – which senses changes in blood glucose levels – displayed elevated levels of activity in a subpopulation of beta cells. This resulted in heightened metabolism due to glucokinase breaking down more molecules of glucose to generate the high levels of ATP (usable energy) versus ADP (used energy) required for insulin release, reflecting previous findings (Johnston et al., 2016; Westacott et al., 2017b).
Notably, beta cells were more likely to synchronize their response to glucose if their metabolic activity was similar; moreover, changing these intrinsic properties led to a loss of the beta cell subpopulation. Reducing gap junction coupling also did not stop the beta cells within the islet from synchronizing their activity. It did, however, make them much weaker at transmitting electrical signals across the islet.
It has long been thought that gap junctions are the major driver of synchronized beta cell activity, and that their disruption during diabetes leads to impaired insulin secretion. However, the findings of Briggs et al. suggest that gap junctions are just one piece of the jigsaw, and that cells with similar intrinsic properties – such as metabolic actvity – also drive islet dynamics (Figure 1).
So which mechanism fails first during diabetes: gap junctions or intrinsic cellular properties? Small decreases in the number of gap junctions and their associated electrical signalling, which occurs during diabetes, would make it much harder for beta cells within a subpopulation to synchronize. On the other hand, small changes in intrinsic cellular properties might render gap junction synchronization much less effective. Complicating matters further, loss of gap junction coupling likely influences the intrinsic properties of beta cells and vice versa. Therefore, the disrupted islet dynamics and impaired insulin release observed in patients with diabetes is probably due in part to both mechanisms failing simultaneously.
The study by Briggs et al. shows that no single mechanism drives synchronized beta cell activity: rather, subpopulations and gap junctions come together to shape islet behaviour. Further computational modelling could help tease out – or even predict – how the critical relationship between beta cell subpopulations and gap junctions influences insulin release. Further experimental work is also warranted to understand how the interplay between beta cell subpopulations and gap junctions is altered during diabetes.
References
-
Beta cell hubs dictate pancreatic islet responses to glucoseCell Metabolism 24:389–401.https://doi.org/10.1016/j.cmet.2016.06.020
-
Do oscillations in pancreatic islets require pacemaker cells?Journal of Biosciences 47:14.https://doi.org/10.1007/s12038-021-00251-6
-
Functional connectivity in islets of Langerhans from mouse pancreas tissue slicesPLOS Computational Biology 9:e1002923.https://doi.org/10.1371/journal.pcbi.1002923
Article and author information
Author details
Publication history
Copyright
© 2024, Peercy and Hodson
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,091
- views
-
- 126
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia (‘deuteranopes’), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from eLife, comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from eLife (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.
-
- Computational and Systems Biology
The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.