Epigenetics: Linking environmental factors and gene regulation
Gene regulation is a complex process that allows cells to control when and how they express their genes. Genetic variants can influence these mechanisms, often causing issues that lead to disease (Albert and Kruglyak, 2015). But could environmental signals also play a similar role?
This question has fuelled much interest into epigenetics, a field that focuses on a range of molecular mechanisms which modify DNA while leaving the underlying genetic sequence intact. The best-known example, DNA methylation, is crucial for fundamental biological processes such as cell fate decision. This process relies on methyl groups being added to certain genetic sites. These ‘marks’ can persist through division and therefore be transmitted across cell generations and importantly, environmental factors can influence them (Moore et al., 2013). As such, DNA methylation represents a potential mechanism by which the environment can shape gene expression and subsequent health outcomes. Indeed, early changes in DNA methylation have been proposed to dictate how an organism responds to stressors later in life, enabling adverse childhood experiences to become biologically ‘embedded’ by leaving genetic traces with life-long consequences (Aristizabal et al., 2020).
Many human studies have tried to identify the DNA methylation signatures associated with early exposure to adverse events in peripheral tissues such as blood or buccal cells (Cecil et al., 2020). As the functional impact of these changes has rarely been explored, however, it remains unclear whether they can impact future responses to stimuli. Overall, the extent to which DNA methylation affects gene expression is still poorly understood. Some studies report that methylation marks disrupt transcription factor binding and other gene expression mechanisms, but other evidence indicates they may have no effect on the activity of most regulatory elements (Kreibich et al., 2023). These conflicting results highlight the need to closely examine which type of impact methylation may have on various regulatory sites. Now, in eLife, Rachel Johnston, Jenny Tung and colleagues at Duke University and other institutes in Canada, Germany and the United States report having used a technique called mSTARR-seq to investigate the effect of DNA methylation on the activity of millions of sequences across the human genome, particularly in response to environmental factors (Johnston et al., 2024).
The team had previously developed this approach to assess the functional effects of DNA methylation on a large number of sequences ‘in one go’, but they had not examined then the impact of external stimuli. In their latest study, they aimed to address this gap by first using mSTARR-seq to assess the activity on a genome-wide level, including the most studied methylation sites in both their methylated and unmethylated states. This revealed that differences in methylation status impacted the activity of almost half of known regulatory regions, suggesting a genome-wide role of DNA methylation in gene regulation.
Next, Johnston et al. assessed whether pre-existing DNA methylation status influenced how cells respond to stimuli. To do so, they applied mSTARR-seq to immune cells exposed to molecules known to modulate inflammation and mediate stress responses. By modelling immune system activation and stress responses, the team highlighted thousands of regulatory regions that respond differentially to the compounds depending on their initial DNA methylation status. Further experiments using macrophages from human donors confirmed that differences in pre-existing methylation patterns predicted responses to viral infection (Figure 1).
Finally, the team explored whether methylation changes linked to early life stressors could influence gene regulation. To do so, they used data from 27 studies and compiled a list of genomic regions whose methylation levels are associated with adverse childhood events. Except for one study, these sequences were not more likely to be gene regulatory regions compared to chance; they were also not enriched in sites that the mSTARR-seq analyses highlighted as displaying DNA-methylation-dependent activity. This led Johnston et al. to suggest that DNA methylation marks linked to childhood adversity in peripheral tissues might serve as indicators of exposure to early stressors, rather than cause gene expression changes with long-lasting effects.
It is important to note, however, that these findings were established by comparing data from different cell types – the mSTARR-seq analyses are based on immune cell lines, while the studies examining DNA methylation and early stressors used blood, saliva or buccal samples. Yet the physical and psychological outcomes associated with early adverse experiences involve many tissues, which are known to present different methylation patterns (Eriksson et al., 2014; Rahman and McGowan, 2022). It is therefore possible that these marks have a more causal role in other cell types. Further studies investigating how DNA methylation impacts gene expression across tissues would help to clarify the connection between stress in early life, epigenetic changes, and later health outcomes.
Our interaction with our environment is not a passive process – not even at the level of gene expression. The work by Johnston et al. helps to dissect the complexity of this relationship, highlighting how DNA methylation modulates our response to external stimuli. Their study also suggests that we should carefully interpret the role this epigenetic process plays in the long-term impact of early stressors. Numerous questions remain, including about how these findings could be translated into new targets for preventing and treating disease.
References
-
The role of regulatory variation in complex traits and diseaseNature Reviews Genetics 16:197–212.https://doi.org/10.1038/nrg3891
-
Childhood maltreatment and DNA methylation: a systematic reviewNeuroscience and Biobehavioral Reviews 112:392–409.https://doi.org/10.1016/j.neubiorev.2020.02.019
-
Early life stress and later health outcomes—findings from the Helsinki Birth Cohort StudyAmerican Journal of Human Biology 26:111–116.https://doi.org/10.1002/ajhb.22502
-
DNA methylation and its basic functionNeuropsychopharmacology 38:23–38.https://doi.org/10.1038/npp.2012.112
-
Cell-type-specific epigenetic effects of early life stress on the brainTranslational Psychiatry 12:326.https://doi.org/10.1038/s41398-022-02076-9
Article and author information
Author details
Publication history
Copyright
© 2024, Penner-Goeke and Binder
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,655
- views
-
- 259
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Microbiology and Infectious Disease
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.
-
- Chromosomes and Gene Expression
- Neuroscience
Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.