Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana

  1. Yuanyuan Bu  Is a corresponding author
  2. Xingye Dong
  3. Rongrong Zhang
  4. Xianglian Shen
  5. Yan Liu
  6. Shu Shu Wang
  7. Tetsuo Takano
  8. Shenkui Liu  Is a corresponding author
  1. Northeast Forestry University, China
  2. Zhejiang A & F University, China
  3. University of Tokyo, Japan

Abstract

Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress remains unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.

Data availability

Figure 2 - supplement 1 - source data contain the sequences for double mutants argah1/argah2.Figure 7 - supplement 1 - source data contain the original files of the full raw unedited gels of gene expression.

Article and author information

Author details

  1. Yuanyuan Bu

    Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, China
    For correspondence
    yuanyuanbu@nefu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-613X
  2. Xingye Dong

    Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Rongrong Zhang

    Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xianglian Shen

    Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Liu

    Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Shu Shu Wang

    State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Tetsuo Takano

    Asian Natural Environmental Science Center (ASNESC), University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Shenkui Liu

    State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
    For correspondence
    shenkuiliu@nefu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Heilongjiang Provinve Goverment Postdoctoral Science Foundation (LBH-Q18008)

  • Yuanyuan Bu

Program for Changjiang Scholars and Innovative Research Team in University (IRT17R99)

  • Shenkui Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Bu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 607
    views
  • 214
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuanyuan Bu
  2. Xingye Dong
  3. Rongrong Zhang
  4. Xianglian Shen
  5. Yan Liu
  6. Shu Shu Wang
  7. Tetsuo Takano
  8. Shenkui Liu
(2024)
Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana
eLife 13:e96797.
https://doi.org/10.7554/eLife.96797

Share this article

https://doi.org/10.7554/eLife.96797

Further reading

    1. Plant Biology
    Zigmunds Orlovskis, Archana Singh ... Saskia A Hogenhout
    Research Article

    Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors. SAP54 is responsible for the induction of leaf-like flowers in phytoplasma-infected plants. However, we previously demonstrated that the insects were attracted to leaves and the leaf-like flowers were not required. Here, we made the surprising discovery that leaf exposure to leafhopper males is required for the attraction phenotype, suggesting a leaf response that distinguishes leafhopper sex in the presence of SAP54. In contrast, this phytoplasma effector alongside leafhopper females discourages further female colonization. We demonstrate that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Critically, the host plant MADS-box transcription factor short vegetative phase (SVP) emerges as a key element in the female leafhopper preference for plants exposed to males, with SAP54 promoting the degradation of SVP. This preference extends to female colonization of male-exposed svp null mutant plants over those not exposed to males. Our research underscores the dual role of the phytoplasma effector SAP54 in host development alteration and vector attraction - integral to the phytoplasma life cycle. Importantly, we clarify how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects. SAP54 essentially acts as a molecular ‘matchmaker’, helping male leafhoppers more easily locate mates by degrading SVP-containing complexes in leaves. This study not only provides insights into the long reach of single parasite genes in extended phenotypes, but also opens avenues for understanding how transcription factors that regulate plant developmental processes intersect with and influence plant-insect interactions.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.