Signaling: The tale of capturing Norrin

Detailed binding experiments reveal new insights into the Norrin/Wnt signaling pathway that helps to control vascularization in the retina.
  1. Hsin-Yi Henry Ho  Is a corresponding author
  1. Department of Cell Biology and Human Anatomy, University of California, Davis, United States

Many ocular disorders can be traced to blood vessels forming improperly in the eye. In two related genetic conditions known as Norrie disease and familial exudative vitreoretinopathy (FEVR), for example, incomplete development of the retinal vasculature leads to aberrant formation of new blood vessels (known as neovascularization), abnormal tissue growths and the wrinkling of retinal layers (Figure 1A). This often results in retinal detachment and ultimately blindness. Understanding the genetic and molecular processes that contribute to these conditions can help to uncover new treatments, while also providing valuable insights into developmental processes.

Examining the role of Norrin, Tspan12, Fzd4 and LRP5/6 in retinal blood vessel development.

(A) Norrie disease and familial exudative vitreoretinopathy (FEVR), which are linked to mutations in the genes encoding Norrin, Tspan12, Fzd4 or LRP5, are associated with defects in the vascularization (red) of the retina. (B) The signaling protein Norrin (yellow) and transmembrane receptors Tspan12 (purple), Fzd4 (blue) and LRP5/6 (green) function in a common signaling pathway to activate a genetic program that controls retinal vascularization. Bruguera et al. propose a molecular model in which Tspan12 captures Norrin (left) and hands it off to Fzd4 and the Fzd4-LRP5/6 receptor complex (right) to activate downstream signaling.

Norrie disease and FEVR have been linked to mutations in the gene coding for the secreted signaling protein Norrin. Changes to the genes for the Fzd4, LRP5 and Tspan12 transmembrane proteins are also known to cause FEVR (Gilmour, 2015). Great progress has been made over the past two decades in establishing how these molecular actors contribute to blood vessel development in the retina, showing in particular that they are involved in the Wnt/β-catenin signaling pathway (Xu et al., 2004; Ye et al., 2009, Junge et al., 2009; Ke et al., 2013; Chang et al., 2015).

Classically, secreted Wnt proteins bind to transmembrane receptors of the Frizzled (Fzd) family – including Fzd4 – with the help of the co-receptor LRP5 or the related protein LRP6. This triggers a series of molecular events which result in β-catenin activating developmental genes that control how cells divide, differentiate and migrate. Norrin does not share any structural similarities with Wnt proteins, yet it can mimic their function by engaging Fzd4 and LRP5 to trigger the same downstream β-catenin pathway during retinal development (Xu et al., 2004; Figure 1B). This process requires Norrin to bind to the co-receptor Tspan12, even though this protein is not normally required for Wnt signaling (Junge et al., 2009). Exactly why this is the case and how it occurs has remained unclear. Addressing these questions requires precise measurement of the interactions between Tspan12, Norrin, Fzd4 and other receptors. Now, in eLife, Elise Bruguera alongside colleagues Jacob Mahoney and William Weis at Stanford University School of Medicine report having bypassed certain methodological limitations to explore this variation of the Wnt signaling pathway in detail (Bruguera et al., 2024).

Receptors tend to aggregate and lose their activity once extracted from the membrane, making them difficult to study using conventional approaches. Instead, the team purified and embedded Tspan12 and other Norrin co-receptors into nanodiscs; these well-characterized synthetic scaffolds of lipid bilayers resemble the natural environment of the receptors while also allowing precise measurements of their binding affinity (Bruguera et al., 2022).

Strikingly, the experiments showed that Tspan12 binds Norrin with exceedingly high affinity, even in the absence of other co-receptors such as Fzd4. Bruguera et al. used the powerful artificial intelligence program AlphaFold to predict potential binding sites between Norrin and Tspan12. Of the four sites returned by these analyses, three were confirmed via experiments examining how Norrin and Tspan12 could bind after the charge or shape of amino acids at these domains had been altered. Importantly, a mutation associated with Norrie disease is found at one of these sites, strengthening the validity of these findings.

Next, Bruguera et al. addressed how Tspan12 could help Norrin trigger Fzd4- and LRP5/6-mediated β-catenin signaling. Several potential mechanisms were considered and systematically tested, with AlphaFold predictions being used to guide the required experiments. Having shown that Norrin can bind both Tspan12 and Fzd4 simultaneously, the team investigated whether Tspan12 could allow Fzd4 to have a higher affinity for Norrin (by forming a complex with the receptor), or to better bind downstream signaling components (by altering its conformation). However, the analyses showed that this was not the case. In turn, examining if Tspan12 could act by increasing Norrin’s ability to bind LRP5/6 highlighted that, in fact, high Tspan12 levels inhibited Norrin-LRP5/6 associations.

Still, experiments with nanodiscs showed that Fzd4 could bind Norrin more efficiently when Tspan12 was present at the membrane – especially when Norrin was in miniscule concentrations. Likewise, cells expressing both Tspan12 and Fzd4 were better at detecting low levels of Norrin and initiating β-catenin signaling than cells expressing Fzd4 alone. Such findings are consistent with Tspan12 facilitating the detection of Norrin by providing extra binding sites for it on the cell surface.

Taken together, these results led Bruguera et al. to propose that Tspan12 captures Norrin – particularly when present in low quantities – and therefore increases its local concentration at the membrane. As Tspan12 is often located near Fzd4, it can then pass Norrin to Fzd4, which proceeds to form a Norrin-Fzd4-LRP5/6 complex that triggers downstream β-catenin signaling (Figure 1B). This clever strategy, which relies on subtle differences in binding affinity and compatibility between Norrin and its co-receptors, allows cells to sense even small amounts of Norrin, and potentially gradients. Such sensitivity is likely essential; the location and levels of Norrin production are carefully regulated during retinal development, and cells need to be able to accurately respond to this intricate expression pattern (Ye et al., 2009).

More generally, this variation to traditional Wnt signaling represents a prime example of how adaptations can be built into existing biological frameworks to create functional diversity and specificity. Similar mechanisms likely exist in other pathways to facilitate how signals are sensed. In the future, it will be interesting to investigate how Norrin is passed from Tspan12 to the Tspan12-Fzd4 and Fzd4-LRP5/6 complexes, and whether additional ‘exchange-promoting’ factor(s) are required.

Finally, the work by Bruguera et al. has important clinical implications. Current therapies for neovascularization rely on drugs that block blood vessel generation altogether, causing unwanted side effects when administered systemically. As a result, these inhibitors must be delivered locally through repeated ocular injections. Improper neovascularization being restricted to the retina in Norrie disease and FEVR suggests that this process is controlled locally by Norrin and Tspan12; approaches that target these proteins should therefore act more selectively, even if administered systemically. The biochemical and structural insights from the study by Bruguera et al. will undoubtedly advance the development of such therapies.

References

Article and author information

Author details

  1. Hsin-Yi Henry Ho

    Hsin-Yi Henry Ho is in the Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, United States

    For correspondence
    hyhho@ucdavis.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8780-7864

Publication history

  1. Version of Record published: May 30, 2024 (version 1)

Copyright

© 2024, Ho

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 193
    views
  • 21
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hsin-Yi Henry Ho
(2024)
Signaling: The tale of capturing Norrin
eLife 13:e98933.
https://doi.org/10.7554/eLife.98933

Further reading

    1. Structural Biology and Molecular Biophysics
    Callum M Ives, Linh Nguyen ... Elisa Fadda
    Research Article

    Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan’s structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Thomas RM Germe, Natassja G Bush ... Anthony Maxwell
    Research Article

    DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (–1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface ‘swapping’ (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed ‘swivelling’ mechanism for DNA gyrase (Gubaev et al., 2016).