Behavior: Prompting social investigation
Animals often need to assess whether a member of their species (a conspecific) that they have not met before will be a friend or a foe. As such, most adult animals would tend to investigate an unfamiliar peer over one which they were already acquainted with (Tapper and Molas, 2020).
Deciding whether and how to engage with an unknown individual relies on multiple levels of analysis underpinned by different brain networks and areas. First, the animal must identify that it has not encountered this specific peer before. For this, it must detect and check discrete features in the new conspecific against information deposited in memory networks after previous encounters. Certain regions of the hippocampus (the brain structure that helps to form memory and process emotions) have been implicated in this mechanism. Hippocampal neurons in the CA2 region and in the ventral portion of the CA1 area, for example, store social memories that allow animals to distinguish between new and familiar conspecifics (Hitti and Siegelbaum, 2014; Okuyama et al., 2016).
Once an unknown conspecific has been identified, other brain areas are then required to determine the appropriate course of action — whether to approach or retreat, for instance — and to prompt the associated behaviors. Emerging evidence indicates that the lateral septum may be involved in this process (Menon et al., 2022). This brain area – which is mostly formed of inhibitory neurons that repress the activity of the cells they project onto – is known to help shape social and emotional behaviors. The lateral septum receives projections from both the dorsal and ventral segments of the hippocampus and, in turn, connects with various regions involved in goal-directed behaviors. This includes the ventral tegmental area (or VTA; Rizzi-Wise and Wang, 2021). When dopaminergic neurons in this part of the brain are activated, such as during novel social interactions, they help drive the exploration of new stimuli and conspecifics (Gunaydin et al., 2014; Solié et al., 2022; Molas et al., 2024). Yet many of these pathways remain poorly understood. In particular, it is still unclear how the ventral hippocampus interacts with the lateral septum and the VTA to ‘transform’ social memories into motivations that promote individuals to investigate new conspecifics.
Now, in eLife, Malavika Murugan and colleagues at Emory University – including Maha Rashid as first author – report a new pathway between the ventral hippocampus, the lateral septum, and the VTA that regulates social novelty preference in mice (Figure 1; Rashid et al., 2024). To identify this circuit, the team carried out a social discrimination test which involved placing a mouse in an open chamber alongside two conspecifics of the same age and sex, which were caged on opposite sides of the apparatus. Only one of these individuals was known to the test subject, as they had been housed together for 72hours prior to the experiment. This is a much longer period than used in other protocols, allowing the animals to better recognize the features of the familiar peer.
Preference for social novelty was determined by the amount of time the subject spent exploring the new individual relative to the familiar one. Without interventions, the mouse spent longer around the new conspecific.
Rashid et al. then used a technique known as chemogenetics to deactivate the neural pathway connecting the ventral hippocampus to the lateral septum, as this allowed them to assess whether these projections are required for animals to discriminate between novel and familiar social stimuli. The treatment did not affect the mice’s tendency to investigate new foods or objects more, but it disrupted their preference for social novelty (that is, the animals spent similar amounts of time investigating unknown and familiar individuals).
The team then used optogenetics to explore this effect in more detail, as this approach makes it possible to temporarily deactivate the pathway ‘at will’ as the animals perform the test. The experiments showed that the mice preferred investigating the conspecific that had been physically closest to them at the time their pathway had been silenced. Switching off the pathway promoted investigative behaviors towards a familiar individual (with the mice then having less time to spend exploring the unknown conspecific). In addition, if exposed to two new peers, the subjects explored the one which had been nearby during the manipulation. Overall, this suggests that preventing the activation of this pathway results in social investigations being more engaging. This led Rashid et al. to propose that the ventral hippocampus-lateral septum pathway may inhibit downstream regions which drive exploration of new social stimuli, such as the VTA.
The team therefore examined next whether the ventral hippocampus projects onto the pathway connecting the lateral septum to the VTA. To do so, they used monosynaptic rabies tracing, a method that helps reveal which neurons directly communicate with a specific cell. This allowed Rashid et al. to establish that the ventral hippocampus innervates cells in the lateral septum which connect to the VTA; disrupting the latter pathway with chemogenetic tools also prevented the preference for a novel mouse. Crucially, rabies tracing allowed Rashid et al. to show that neurons in the lateral septum directly project onto dopaminergic neurons in the VTA. In particular, the rostral part of the lateral septum, a subdivision recently implicated in the shift from novel to familiar social preferences in young mice, projected most strongly to the dopaminergic cells (de León Reyes et al., 2023).
Taken together, these results reveal a pathway connecting social memories stored in the ventral hippocampus to the centers responsible for motivational social behaviors (Figure 1). Ventral hippocampal cells connect to lateral septum neurons that are important for social behavior, which, in turn, project to VTA dopaminergic centers that control the animal’s social approach. Inhibition of the hippocampal-septal pathway disinhibits these VTA centers, resulting in the mouse being more interested in novel social interactions. These findings will aid in developing new therapies that improve social impairments in numerous neurodevelopmental and neuropsychiatric disorders.
References
-
Neurobiology of the lateral septum: regulation of social behaviorTrends in Neurosciences 45:27–40.https://doi.org/10.1016/j.tins.2021.10.010
-
Ventral CA1 neurons store social memoryScience 353:1536–1541.https://doi.org/10.1126/science.aaf7003
-
Midbrain circuits of novelty processingNeurobiology of Learning and Memory 176:107323.https://doi.org/10.1016/j.nlm.2020.107323
Article and author information
Author details
Publication history
Copyright
© 2024, Keppler and Molas
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 605
- views
-
- 44
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
-
- Neuroscience
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.