GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny  Is a corresponding author
  1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
  2. University of Liège, Belgium
  3. Carnegie Institution for Science, United States
  4. United States Department of Agriculture, United States
  5. Stanford University, United States
  6. University of California, Davis, United States
  7. Harvard Medical School, United States
  8. Department of Energy Joint Genome Institute, United States

Abstract

Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

Article and author information

Author details

  1. Rubén Rellán-Álvarez

    Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillaume Lobet

    PhytoSystems, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Lindner

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pierre-Luc Pradier

    Boyce Thompson Institute for Plant Research, United States Department of Agriculture, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jose Sebastian

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muh-Ching Yee

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Geng

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Trontin

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Therese LaRue

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amanda Schrager-Lavelle

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cara H Haney

    Department of Genetics, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rita Nieu

    Western Regional Research Center, United States Department of Agriculture, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julin Maloof

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John P Vogel

    Department of Energy, Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. José R Dinneny

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    For correspondence
    jdinneny@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Rellán-Álvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,356
    views
  • 2,310
    downloads
  • 189
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny
(2015)
GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems
eLife 4:e07597.
https://doi.org/10.7554/eLife.07597

Share this article

https://doi.org/10.7554/eLife.07597

Further reading

    1. Plant Biology
    Zongju Yang, Tianqi Bai ... Chen Chen
    Research Article

    As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.

    1. Plant Biology
    Yuanyuan Bu, Xingye Dong ... Shenkui Liu
    Research Article Updated

    Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.