GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny  Is a corresponding author
  1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
  2. University of Liège, Belgium
  3. Carnegie Institution for Science, United States
  4. United States Department of Agriculture, United States
  5. Stanford University, United States
  6. University of California, Davis, United States
  7. Harvard Medical School, United States
  8. Department of Energy Joint Genome Institute, United States

Abstract

Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

Article and author information

Author details

  1. Rubén Rellán-Álvarez

    Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillaume Lobet

    PhytoSystems, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Lindner

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pierre-Luc Pradier

    Boyce Thompson Institute for Plant Research, United States Department of Agriculture, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jose Sebastian

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muh-Ching Yee

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Geng

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Trontin

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Therese LaRue

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amanda Schrager-Lavelle

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cara H Haney

    Department of Genetics, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rita Nieu

    Western Regional Research Center, United States Department of Agriculture, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julin Maloof

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John P Vogel

    Department of Energy, Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. José R Dinneny

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    For correspondence
    jdinneny@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Maria J Harrison, Boyce Thompson Institute for Plant Research, United States

Version history

  1. Received: March 23, 2015
  2. Accepted: August 18, 2015
  3. Accepted Manuscript published: August 19, 2015 (version 1)
  4. Version of Record published: October 1, 2015 (version 2)

Copyright

© 2015, Rellán-Álvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,276
    Page views
  • 2,252
    Downloads
  • 158
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny
(2015)
GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems
eLife 4:e07597.
https://doi.org/10.7554/eLife.07597

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Christopher Kesten, Valentin Leitner ... Clara Sanchez-Rodriguez
    Research Article

    Purinergic signaling activated by extracellular nucleotides and their derivative nucleosides trigger sophisticated signaling networks. The outcome of these pathways determine the capacity of the organism to survive under challenging conditions. Both extracellular ATP (eATP) and Adenosine (eAdo) act as primary messengers in mammals, essential for immunosuppressive responses. Despite the clear role of eATP as a plant damage-associated molecular pattern, the function of its nucleoside, eAdo, and of the eAdo/eATP balance in plant stress response remain to be fully elucidated. This is particularly relevant in the context of plant-microbe interaction, where the intruder manipulates the extracellular matrix. Here, we identify Ado as a main molecule secreted by the vascular fungus Fusarium oxysporum. We show that eAdo modulates the plant's susceptibility to fungal colonization by altering the eATP-mediated apoplastic pH homeostasis, an essential physiological player during the infection of this pathogen. Our work indicates that plant pathogens actively imbalance the apoplastic eAdo/eATP levels as a virulence mechanism.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Jinping Lu, Ingo Dreyer ... Rainer Hedrich
    Research Article

    To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca2+. In our search for species-dependent functional TPC1 channel variants with different luminal Ca2+ sensitivity, we found in total three acidic residues present in Ca2+ sensor sites 2 and 3 of the Ca2+-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca2+. When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca2+ sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca2+ sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.