1. Plant Biology
Download icon

GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny  Is a corresponding author
  1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
  2. University of Liège, Belgium
  3. Carnegie Institution for Science, United States
  4. United States Department of Agriculture, United States
  5. Stanford University, United States
  6. University of California, Davis, United States
  7. Harvard Medical School, United States
  8. Department of Energy Joint Genome Institute, United States
Tools and Resources
  • Cited 90
  • Views 10,887
  • Annotations
Cite this article as: eLife 2015;4:e07597 doi: 10.7554/eLife.07597

Abstract

Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

Article and author information

Author details

  1. Rubén Rellán-Álvarez

    Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillaume Lobet

    PhytoSystems, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Lindner

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pierre-Luc Pradier

    Boyce Thompson Institute for Plant Research, United States Department of Agriculture, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jose Sebastian

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muh-Ching Yee

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Geng

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Trontin

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Therese LaRue

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amanda Schrager-Lavelle

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cara H Haney

    Department of Genetics, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rita Nieu

    Western Regional Research Center, United States Department of Agriculture, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julin Maloof

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John P Vogel

    Department of Energy, Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. José R Dinneny

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    For correspondence
    jdinneny@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Maria J Harrison, Boyce Thompson Institute for Plant Research, United States

Publication history

  1. Received: March 23, 2015
  2. Accepted: August 18, 2015
  3. Accepted Manuscript published: August 19, 2015 (version 1)
  4. Version of Record published: October 1, 2015 (version 2)

Copyright

© 2015, Rellán-Álvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,887
    Page views
  • 1,911
    Downloads
  • 90
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Plant Biology
    Pengqi Xu et al.
    Research Article

    Carotenoids are essential in oxygenic photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and in photoprotection. In plants, they are present as carotenes and their oxygenated derivatives, xanthophylls. While mutant plants lacking xanthophylls are capable of photoautotrophic growth, no plants without carotenes in their photosystems have been reported so far, which has led to the common opinion that carotenes are essential for photosynthesis. Here, we report the first plant that grows photoautotrophically in the absence of carotenes: a tobacco plant containing only the xanthophyll astaxanthin. Surprisingly, both photosystems are fully functional despite their carotenoid-binding sites being occupied by astaxanthin instead of β-carotene or remaining empty (i.e., are not occupied by carotenoids). These plants display non-photochemical quenching, despite the absence of both zeaxanthin and lutein and show that tobacco can regulate the ratio between the two photosystems in a very large dynamic range to optimize electron transport.

    1. Cell Biology
    2. Plant Biology
    Madlen Stephani et al.
    Research Article Updated

    Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.