GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny  Is a corresponding author
  1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
  2. University of Liège, Belgium
  3. Carnegie Institution for Science, United States
  4. United States Department of Agriculture, United States
  5. Stanford University, United States
  6. University of California, Davis, United States
  7. Harvard Medical School, United States
  8. Department of Energy Joint Genome Institute, United States

Abstract

Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

Article and author information

Author details

  1. Rubén Rellán-Álvarez

    Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Guillaume Lobet

    PhytoSystems, University of Liège, Liège, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Heike Lindner

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pierre-Luc Pradier

    Boyce Thompson Institute for Plant Research, United States Department of Agriculture, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jose Sebastian

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muh-Ching Yee

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yu Geng

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Trontin

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Therese LaRue

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Amanda Schrager-Lavelle

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cara H Haney

    Department of Genetics, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rita Nieu

    Western Regional Research Center, United States Department of Agriculture, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julin Maloof

    Department of Plant Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John P Vogel

    Department of Energy, Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. José R Dinneny

    Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
    For correspondence
    jdinneny@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Maria J Harrison, Boyce Thompson Institute for Plant Research, United States

Version history

  1. Received: March 23, 2015
  2. Accepted: August 18, 2015
  3. Accepted Manuscript published: August 19, 2015 (version 1)
  4. Version of Record published: October 1, 2015 (version 2)

Copyright

© 2015, Rellán-Álvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,333
    views
  • 2,296
    downloads
  • 187
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rubén Rellán-Álvarez
  2. Guillaume Lobet
  3. Heike Lindner
  4. Pierre-Luc Pradier
  5. Jose Sebastian
  6. Muh-Ching Yee
  7. Yu Geng
  8. Charlotte Trontin
  9. Therese LaRue
  10. Amanda Schrager-Lavelle
  11. Cara H Haney
  12. Rita Nieu
  13. Julin Maloof
  14. John P Vogel
  15. José R Dinneny
(2015)
GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems
eLife 4:e07597.
https://doi.org/10.7554/eLife.07597

Share this article

https://doi.org/10.7554/eLife.07597

Further reading

    1. Plant Biology
    Zhao-Ying Zeng, Jun-Rong Huang ... Han-Bo Zhang
    Research Article

    Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.

    1. Plant Biology
    Vilde Olsson Lalun, Maike Breiden ... Melinka A Butenko
    Research Article

    The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.