Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction

Abstract

Women live on average longer than men, but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the ageing gut in Drosophila. The intestinal epithelium of the ageing female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in ageing females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like ageing pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction.

Article and author information

Author details

  1. Jennifer C Regan

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    For correspondence
    j.regan@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Mobina Khericha

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Adam J Dobson

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ekin Bolukbasi

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Nattaphong Rattanavirotkul

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Linda Partridge

    Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrew Dillin, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: August 18, 2015
  2. Accepted: February 2, 2016
  3. Accepted Manuscript published: February 16, 2016 (version 1)
  4. Version of Record published: March 14, 2016 (version 2)

Copyright

© 2016, Regan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,445
    views
  • 1,677
    downloads
  • 186
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer C Regan
  2. Mobina Khericha
  3. Adam J Dobson
  4. Ekin Bolukbasi
  5. Nattaphong Rattanavirotkul
  6. Linda Partridge
(2016)
Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction
eLife 5:e10956.
https://doi.org/10.7554/eLife.10956

Share this article

https://doi.org/10.7554/eLife.10956

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.