Nucleosome breathing and remodeling constrain CRISPR‐Cas9 function

  1. R Stefan Isaac
  2. Fuguo Jiang
  3. Jennifer A Doudna
  4. Wendell A Lim
  5. Geeta J Narlikar  Is a corresponding author
  6. Ricardo AB Almeida
  1. University of California, San Francisco, United States
  2. University of California, Berkeley, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Howard Hughes Medical Institute, United States

Abstract

The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allows Cas9 to effectively act on chromatin in vivo.

Article and author information

Author details

  1. R Stefan Isaac

    Department of Biochemistry and Biophysics and Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Fuguo Jiang

    Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Jennifer A Doudna

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Jennifer A Doudna, Co‐founder of Caribou Biosciences; Editas Medicine; Intellia Therapeutics.
  4. Wendell A Lim

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, San Francisco, United States
    Competing interests
    Wendell A Lim, Founder of Cell Design Labs, and member of its scientific advisory board.
  5. Geeta J Narlikar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Geeta.Narlikar@ucsf.edu
    Competing interests
    No competing interests declared.
  6. Ricardo AB Almeida

    Department of Cellular and Molecular Pharmacology, Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Version history

  1. Received: December 2, 2015
  2. Accepted: April 16, 2016
  3. Accepted Manuscript published: April 28, 2016 (version 1)
  4. Version of Record published: May 25, 2016 (version 2)

Copyright

© 2016, Isaac et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,153
    views
  • 2,296
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. R Stefan Isaac
  2. Fuguo Jiang
  3. Jennifer A Doudna
  4. Wendell A Lim
  5. Geeta J Narlikar
  6. Ricardo AB Almeida
(2016)
Nucleosome breathing and remodeling constrain CRISPR‐Cas9 function
eLife 5:e13450.
https://doi.org/10.7554/eLife.13450

Share this article

https://doi.org/10.7554/eLife.13450

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.