Live 3D imaging highlights cellular activity during embryonic heart development

Imaging technique reveals three phases of heart-tube formation in mouse embryos, and could help increase our understanding of normal heart development and how abnormalities occur in newborns.
Press pack
  • Views 17
  • Annotations

Live imaging techniques have given Spanish researchers deeper insight into the development of the embryonic heart in mice.

Their live analysis reveals the coordination that occurs between cardiac progenitor cells – cells that, similar to stem cells, can change into another specific type of cell – during heart development. They found that progenitor cells go through alternate phases of changing into cardiac muscle (differentiation) to help initiate early heart function, and helping the heart tube to take on its shape (morphogenesis). The study, which was originally published as a preprint in bioRxiv, appears today in the journal eLife.

“Previous studies have shown that two populations of progenitor cells are involved in vertebrate heart development: first heart field (FHF) cells and second heart field (SHF) cells,” explains lead author Kenzo Ivanovitch, postdoctoral researcher at the Spanish National Cardiovascular Research Center (CNIC). “FHFs are recruited early in development to form the initial shape of the heart tube, and SHFs are brought in later to extend the length of the tube. However, until now, both the exact role of cell differentiation and cellular movements during heart development have not been captured.”

To look further into this process, Ivanovitch and his team, including Susana Temiño, a technician at CNIC, established a whole-embryo, live-imaging method based on two-photon microscopy that allows for tissues to be tracked at the cellular level. Using various genetic tracing tools, they labeled progenitor and differentiated cells and tracked them in 3D over time. They then combined these images with 3D reconstructions of the heart tube at multiple stages of development.

“Our images showed three distinct phases of heart tube formation,” explains Ivanovitch. “During an initial phase, FHF cells differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In the second stage, there are no differentiation events, but extensive morphogenesis results in the fully formed heart tube. And in the third and final phase, cardiac cell differentiation resumes and contributes to the known SHF-derived regions of the heart. This tightly regulated schedule allows the young heart to start working as the embryo requires, while simultaneously building the complex architecture of the final, definitive organ.”

These findings highlight the essential role that FHF and SHF cells play in embryonic heart development and reveal tissue-level coordination between alternating phases of differentiation and morphogenesis during the formation of the heart tube.

Senior author Miguel Torres, Group Leader at CNIC, adds: “In the future, we hope that building on this work will help reveal new mechanisms of organogenesis. This would have important implications for greater understanding of both normal heart development and the origins of abnormalities in newborn babies.”

##

This study originally appeared as a preprint in bioRxiv, at https://doi.org/10.1101/170522.

Media contacts

  1. Emily Packer
    eLife
    e.packer@elifesciences.org
    +441223855373

About

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust. Learn more at https://elifesciences.org.

About the CNIC

The Centro Nacional de Investigaciones Cardiovasculares (CNIC), directed by Dr. Valentín Fuster, is dedicated to cardiovascular research and the translation of knowledge gained into real benefits for patients. The CNIC, recognized by the Spanish government as a Severo Ochoa center of excellence, is financed through a pioneering public-private partnership between the government (through the Carlos III Institute of Health) and the Pro-CNIC Foundation, which brings together 14 of the most important Spanish private companies. Learn more at https://www.cnic.es.