Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorGui XueBeijing Normal University, Beijing, China
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public review):
Summary:
In this manuscript, Shao et al. investigate the contribution of different cortical areas to working memory maintenance and control processes, an important topic involving different ideas about how the human brain represents and uses information when no longer available to sensory systems. In two fMRI experiments, they demonstrate that human frontal cortex (area sPCS) represents stimulus (orientation) information both during typical maintenance, but even more so when a categorical response demand is present. That is, when participants have to apply an added level of decision control to the WM stimulus, sPCS areas encode stimulus information more than conditions without this added demand. These effects are then expanded upon using multi-area neural network models, recapitulating the empirical gradient of memory vs control effects from visual to parietal and frontal cortices. Multiple experiments and analysis frameworks provide support for the authors' conclusions, and control experiments and analysis are provided to help interpret and isolate the frontal cortex effect of interest. While some alternative explanations/theories may explain the roles of frontal cortex in this study and experiments, important additional analyses have been added that help ensure a strong level of support for these results and interpretations.
Strengths:
- The authors use an interesting and clever task design across two fMRI experiments that is able to parse out contributions of WM maintenance alone along with categorical, rule-based decisions. Importantly, the second experiments only uses one fixed rule, providing both an internal replication of Experiment 1's effects and extending them to a different situation when rule switching effects are not involved across mini-blocks.
- The reported analyses using both inverted encoding models (IEM) and decoders (SVM) demonstrate the stimulus reconstruction effects across different methods, which may be sensitive to different aspects of the relationship between patterns of brain activity and the experimental stimuli.
- Linking the multivariate activity patterns to memory behavior is critical in thinking about the potential differential roles of cortical areas in sub-serving successful working memory. Figure 3's nicely shows a similar interaction to that of Figure 2 in the role of sPCS in the categorization vs. maintenance tasks. This is an important contribution to the field when we consider how a distributed set of interacting cortical areas support successful working memory behavior.
- The cross-decoding analysis in Figure 4 is a clever and interesting way to parse out how stimulus and rule/category information may be intertwined, which would have been one of the foremost potential questions or analyses requested by careful readers.
- Additional ROI analyses in more anterior regions of the PFC help to contextualize the main effects of interest in the sPCS (and no effect in the inferior frontal areas, which are also retinotopic, adds specificity). And, more explanation for how motor areas or preparation are likely not involved strengthens the takeaways of the study (M1 control analysis).
- Quantitative link via RDM-style analyses between the RNNs constructed and fMRI data.
Weaknesses:
- In the given tasks, multiple types of information codes may be present, and more detail on this possibility could always be added analytically or in discussion. However, the authors have added beneficial support to this comparison in this version of the manuscript.
- The space of possible RNN architectures and their biological feasibility could always be explored more, but links between the fMRI and RNN data provide a good foundation for this work moving forward.
Reviewer #2 (Public review):
Summary:
The author provide evidence that helps resolve long-standing questions about the differential involvement of frontal and posterior cortex in working memory. They show that whereas early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.
Strengths:
This paper was overall strong. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modeling adds additional insight into the potential computational roles of different regions.
Weaknesses:
Few. The RNN-fMRI correspondence could be a little more comprehensive, but the paper contributes a compelling set of empirical findings and interpretations that can inform future research.