Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAxel BrakhageHans Knöll Institute, Jena, 07743, Germany
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public Review):
Summary:
The fungal cell wall is a very important structure for the physiology of a fungus but also for the interaction of pathogenic fungi with the host. Although a lot of knowledge on the fungal cell wall has been gained, there is a lack of understanding of the meaning of ß-1,6-glucan in the cell wall. In the current manuscript, the authors studied in particular this carbohydrate in the important human-pathogenic fungus Candida albicans. The authors provide a comprehensive characterization of cell wall constituents under different environmental and physiological conditions, in particular of ß-1,6-glucan. Also, β-1,6-glucan biosynthesis was found to be likely a compensatory reaction when mannan elongation was defective. The absence of β-1,6-glucan resulted in a significantly sick growth phenotype and complete cell wall reorganization. The manuscript contains a detailed analysis of the genetic and biochemical basis of ß-1,6-glucan biosynthesis which is apparently in many aspects similar to yeast. Finally, the authors provide some initial studies on the immune modulatory effects of ß-1,6-glucan.
Strengths:
The findings are very well documented, and the data are clear and obtained by sophisticated biochemical methods. It is impressive that the authors successfully optimized methods for the analyses and quantification of ß-1-6-glucan under different environmental conditions and in different mutant strains.
Weaknesses:
However, although already very interesting, at this stage there are some loose ends that need to be combined to strengthen the manuscript. For example, the immunological studies are rather preliminary and need at least some substantiation. Also, at this stage, the manuscript in some places remains a bit too descriptive and needs the elucidation of potential causalities.
Reviewer #2 (Public Review):
Summary:
The authors provide the first (to my knowledge) detailed characterization of cell wall b-1,6 glucan in the pathogen Candida albicans. The approaches range from biochemistry to genetics to immunology. The study provides fundamental information and will be a resource of exceptional value to the field going forward. Highlights include the construction of a mutant that lacks all b-1,6 glucan and the characterization of its cell wall composition and structure. Figure 5a is a feast for the eyes, showing that b-1,6 glucan is vital for the outer fibrillar layer of the cell wall. Also much appreciated was the summary figure, Figure 7, which presents the main findings in digestible form.
Strengths:
The work is highly significant for the fungal pathogen field especially, and more broadly for anyone studying fungi, antifungal drugs, or antifungal immune responses.
The manuscript is very readable, which is important because most readers will be cell wall nonspecialists.
The authors construct a key quadruple mutant, which is not trivial even with CRISPR methods, and validate it with a complemented strain. This aspect of the study sets the bar high.
The authors develop new and transferable methods for b-1,6 glucan analysis.
Weaknesses:
The one "famous" cell type that would have been interesting to include is the opaque cell. This could be included in a future paper.
Reviewer #3 (Public Review):
Summary:
The cell wall of human fungal pathogens, such as Candida albicans, is crucial for structural support and modulating the host immune response. Although extensively studied in yeasts and molds, the structural composition has largely focused on the structural glucan b,1,3-glucan and the surface exposed mannans, while the fibrillar component β-1,6-glucan, a significant component of the well wall, has been largely overlooked. This comprehensive biochemical and immunological study by a highly experienced cell wall group provides a strong case for the importance of β-1,6-glucan contributing critically to cell wall integrity, filamentous growth, and cell wall stability resulting from defects in mannan elongation. Additionally, β-1,6-glucan responds to environmental stimuli and stresses, playing a key role in wall remodeling and immune response modulation, making it a potential critical factor for host-pathogen interactions.
Strengths:
Overall, this study is well-designed and executed. It provides the first comprehensive assessment of β-1,6-glucan as a dynamic, albeit underappreciated, molecule. The role of β-1,6-glucan genetics and biochemistry has been explored in molds like Aspergillus fumigatus, but this work shines an important light on its role in Candida albicans. This is important work that is of value to Medical Mycology, since β-1,6-glucan plays more than just a structural role in the wall. It may serve as a PAMP and a potential modulator of host-pathogen interactions. In keeping with this important role, the manuscript rigor would benefit from a more physiological evaluation ex vivo and preferably in vivo, assessment on stimulating the immune system within in the cell wall and not just as a purified component. This is a critical outcome measure for this study and gets squarely at its importance for host-pathogen interactions, especially in response to environmental stimuli and drug exposure.