Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorFelix CampeloInstitute of Photonic Sciences, Barcelona, Spain
- Senior EditorFelix CampeloInstitute of Photonic Sciences, Barcelona, Spain
Reviewer #1 (Public review):
Summary:
In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.
Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.
Strengths:
- Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.
- A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.
Weaknesses:
- Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.
- While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.
- So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.
- Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)
Reviewer #2 (Public review):
The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.
The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:
Major points:
It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.
In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.
Several statements appear to be not sufficiently justified and supported by data.
For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'
Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.
What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.
The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.
The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.
The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?
Reviewer #1 (Public review):
Summary:
In this article, Gupta and colleagues explore the parameters that could promote the elimination of active Ras cells when surrounded by WT cells. The elimination of active Ras cells by surrounding WT cells was previously described extensively and associated with a process named cell competition, a context dependant elimination of cells. Several mechanisms have been associated with competition, including more recently elimination processes based on mechanical stress. This was explored theoretically and experimentally and was either associated with differential growth and sensitivity to pressure and/or differences in homeostatic density/pressure. This was extensively validated for the case of Scribble mutant cells which are eliminated by WT MDCK cells due to their higher homeostatic density. However, there has been so far very little systematic characterisation of the mechanical parameters and properties of these different cell types and how this could contribute to mechanical competition.
Here, the authors used the context of active Ras cells in MDCK cells (with some observations in vivo in mice gut which are a bit more anecdotal) to explore the parameters causal to Ras cell elimination. Using for the first time traction force microscopy, stress microscopy combined with Bayesian inference, they first show that clusters of active Ras cells experience higher pressure compared to WT. Interestingly, this occurs in absence of differences in growth rate, and while Ras cells seems to have lower homeostatic density, in contractions with the previous models associated with mechanical cell competition. Using a self-propelled Voronoi model, they explored more systematically the conditions that will promote the compression of transformed cells, showing globally that higher Area compressibility and/or lower junctional tension are associated with higher compressibility. Using then an original and novel experimental method to measure bulk compressibility of cell populations, they confirmed that active Ras cells are globally twice more compressible than WT cells. This compressibility correlates with a disruption of adherens junctions. Accordingly, the higher pressure near transformed Ras cells can be completely rescued by increasing cell-cell adhesion through E-cad overexpression, which also reduces the compressibility of the transformed cells. Altogether, these results go along the lines of a previous theoretical work (Gradeci et al. eLife 2021) which was suggesting that reduced stiffness/higher compressibility was essential to promote loser cell elimination. Here, the authors provide for the first time a very convincing experimental measurement and validation of this prediction. Moreover, their modelling approach goes far beyond what was performed before in terms of exploration of conditions promoting compressibility, and their experimental data point at alternative mechanisms that may contribute to mechanical competition.
Strengths:
- Original methodologies to perform systematic characterisation of mechanical properties of Ras cells during cell competition, which include a novel method to measure bulk compressibility.
- A very extensive theoretical exploration of the parameters promoting cell compaction in the context of competition.
Weaknesses:
- Most of the theoretical focus is centred on the bulk compressibility, but so far does not really explain the final fate of the transformed cells. Classic cell competition scenario (including the one involving active Ras cells) lead to the elimination of one cell population either by cell extrusion/cell death or global delamination. This aspect is absolutely not explored in this article, experimentally or theoretically, and as such it is difficult to connect all the observables with the final outcome of cell competition. For instance, higher compressibility may not lead to loser status if the cells can withstand high density without extruding compared to the WT cells (and could even completely invert the final outcome of the competition). Down the line, and as suggested in most of the previous models/experiments, the relationship between pressure/density and extrusion/death will be the key factor that determine the final outcome of competition. However, there is absolutely no characterisation of cell death/cell extrusion in the article so far.
- While the compressibility measurement are very original and interesting, this bulk measurement could be explained by very different cellular processes, from modulation of cell shape, to cell extrusion and tissue multilayering (which by the way was already observed for active Ras cells, see for instance https://pubmed.ncbi.nlm.nih.gov/34644109/). This could change a lot the interpretation of this measurement and to which extend it can explain the compression observed in mixed culture. This compressibility measurement could be much more informative if coupled with an estimation of the change of cell aspect ratio and the rough evaluation of the contribution of cell shape changes versus alternative mechanisms.
- So far, there is no clear explanation of why transformed Ras cells get more compacted in the context of mixed culture compared to pure Ras culture. Previously, the compaction of mutant Scribble cells could be explained by the higher homeostatic density of WT cells which impose their prefered higher density to Scribble mutant (see Wagstaff et al. 2016 or Gradeci et al 2021), however that is not the case of the Ras cells (which have even slightly higher density at confluency). If I understood properly, the Voronoid model assumes some directional movement of WT cell toward transformed which will actively compact the Ras cells through self-propelled forces (see supplementary methods), but this is never clearly discussed/described in the results section, while potentially being one essential ingredient for observing compaction of transformed cells. In fact, this was already described experimentally in the case of Scribble competition and associated with chemoattractant secretion from the mutant cells promoting directed migration of the WT (https://pubmed.ncbi.nlm.nih.gov/33357449/). It would be essential to show what happens in absence of directional propelled movement in the model and validate experimentally whether there is indeed directional movement of the WT toward the transformed cells. Without this, the current data does not really explain the competition process.
- Some of the data lack a bit of information on statistic, especially for all the stress microscopy and traction forces where we do no really know how representative at the stress patterns (how many experiment, are they average of several movies ? integrated on which temporal window ?)
Reviewer #2 (Public review):
The work by Gupta et al. addresses the role of tissue compressibility as a driver of cell competition. The authors use a planar epithelial monolayer system to study cell competition between wild type and transformed epithelial cells expressing HRasV12. They combine imaging and traction force measurements from which the authors propose that wild type cells generate compressive forces on transformed epithelial cells. The authors further present a novel setup to directly measure the compressibility of adherent epithelial tissues. These measurements suggest a higher compressibility of transformed epithelial cells, which is causally linked to a reduction in cell-cell adhesion in transformed cells. The authors support their conclusions by theoretical modelling using a self-Propelled Voronoi model that supports differences in tissue compressibility can lead to compression of the softer tissue type.
The experimental framework to measure tissue compressibility of adherent epithelial monolayers establishes a novel tool, however additional controls of this measurement appear required. Moreover, the experimental support of this study is mostly based on single representative images and would greatly benefit from additional data and their quantitative analysis to support the authors' conclusions. Specific comments are also listed in the following:
Major points:
It is not evident in Fig2A that traction forces increase along the interface between wild type and transformed populations and stresses in Fig2C also seem to be similar at the interface and surrounding cell layer. Only representative examples are provided and a quantification of sigma_m needs to be provided.
In Figure 1-3 only panel 2G and 2H provide a quantitative analysis, but it is not clear how many regions of interest and clusters of transform cells were quantified.
Several statements appear to be not sufficiently justified and supported by data.
For example the statement on pg 3. line 38 seems to lack supportive data 'This comparison revealed that the thickness of HRasV12-expressing cells was reduced by more than 1.7-fold when they were surrounded by wild type cells. These observations pointed towards a selective, competition-dependent compaction of HRasV12-expressing transformed cells but not control cells, in the intestinal villi of mice.'
Similarly, the statement about a cell area change of 2.7 fold (pg 3 line 47) lacks support by measurements.
What is the rationale for setting 𝐾p = 1 in the model assumptions if clear differences in junctional membranes of transformed versus wild type cells occur, including dynamic ruffling? This assumption does not seem to be in line with biological observations.
The novel approach to measure tissue compressibility is based on pH dependent hydrogels. As the pH responsive hydrogel pillar is placed into a culture medium with different conditions, an important control would be if the insertion of this hydrogel itself would change the pH or conditions of the culture assays and whether this alters tissue compressibility or cell adhesion. The authors could for example insert a hydrogel pillar of a smaller diameter that would not lead to compression or culture cells in a larger ring to assess the influence of the pillar itself.
The authors focus on the study of cell compaction of the transformed cells, but how does this ultimately lead to a competitive benefit of wild type cells? Is a higher rate of extrusion observed and associated with the compaction of transformed cells or is their cell death rate increased? While transformed cells seem to maintain a proliferative advantage it is not clear which consequences of tissue compression ultimately drive cell competition between wild type and transformed cells.
The argumentation that softer tissues would be more easily compressed is plausible. However, which mechanism do the authors suggest is generating the actual compressive stress to drive the compaction of transformed cells? They exclude a proliferative advantage of wild type cells, which other mechanisms will generate the compressive forces by wild type cells?