Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJeannie LeeMassachusetts General Hospital, Boston, United States of America
- Senior EditorMurim ChoiSeoul National University, Seoul, Republic of Korea
Reviewer #1 (Public review):
Summary:
This manuscript investigates genes that escape X-Chromosome Inactivation (XCI) across human tissues, using females that exhibit skewed or non-random XCI. The authors identified 2 female individuals with skewed XCI in the GTex database, in addition to the 1 female skewed sample in this database that has been described in a previous publication (Ref.16). The authors also determined the genes which escape XCI for 380 X-linked genes across 30 different tissues.
Strengths:
The novelty of this manuscript is that the authors have identified the XCI expression status for a total of 380 genes across 30 different human tissues, and also discovered the XCI status (escape, variable escape, or silenced) for 198 X-linked genes, whose status was previously not determined. This report is a good resource for the field of XCI, and would benefit from additional analyses and clarification of their comparisons of XCI status.
Reviewer #2 (Public review):
Summary:
Gylemo et al. present a manuscript focused on identifying the X-inactivation or X-inactivation escape status for 380 genes across 30 normal human tissues. X-inactivation status of X-linked genes across tissues is important for understanding sex-specific differences in X-linked gene expression and therefore traits, and the likely effect of X-linked pathogenic variants in females. These new data are significant as they double the number of genes that have been classified in the human, and double the number of tissues studied previously.
Strengths:
The strengths of this work are that they analyse 3 individuals from the GTex dataset (2 newly identified, 1 previously identified and published) that have highly/ completely skewed X inactivation, which allows the study of escape from X inactivation in bulk RNA-sequencing. The number of individuals and breadth of tissues analysed adds significantly to both the number of genes that have been classified and the weight of evidence for their claims. The additional 198 genes that have been classified and the reclassification of genes that previously had only limited support for their status is useful for the field.
In analysing the data they find that tissue-specific escape from X inactivation appears relatively rare. Rather, if genes escape, even variably, it tends to occur across tissues. Similarly if a gene is inactivated, it is stable across tissues.
Comments on revised version:
The authors have answered all of my queries. While they have not been able to pinpoint the genetic cause of the highly skewed XCI cases in their cohort, I agree this is beyond the scope of this study. I have no further requests.
Reviewer #3 (Public review):
Summary:
Nestor and colleagues identify genes escaping X chromosome inactivation (XCI) in rare individuals with non-mosaic XCI (nmXCI) whose tissue-specific RNA-seq datasets were obtained from the GTEX database. Because XCI is non-mosaic, read counts representing a second allele are tested for statistical significant escape, in this case > 2.5% of active X expression. Whereas a prior GTEX analysis found only one nmXCI female, this study finds two additional donors in GTEX, therefore expanding the number of assessed X-linked genes to 380. Although this is fewer than half of X-linked genes, the study demonstrates that although rare, nmXCI females are represented in RNA-seq databases such as GTEX. Therefore this analytical approach is worthwhile pursuing in other (larger) databases as well, to provide deeper insight into escape from XCI which is relevant to X-linked diseases and sex differences.
Strengths:
The analysis is well-documented, straight-forward and valuable. The supplementary tables are useful, and the claims in the main text well-supported.
Weaknesses:
There are very few, except that this escape catalogue is limited to 3 donors, based on a single (representative) tissue screen in 285 female donors, mostly using muscle samples. However, if only pituitary samples had been screened, nmXCI-1 would have been missed. Additional donors in the 285 representative samples cross a lower threshold of AE = 0.4. It would be worthwhile to query all tissues of the 285 donors to discover more nmXCI cases, as currently fewer than half of X-linked genes received a call using this very worthwhile approach.
Comments on revised version:
The authors incorporated some textual changes, but deferred any new analysis, or expansion from these two new skewed donors to include more individuals/tissues, or going more in depth for individual genes to future manuscripts. They appear to have that option at eLife.
Reviewer #4 (Public review):
Summary:
This study by Gylemo et al. investigates genes that escape X-Chromosome Inactivation (XCI) by analyzing RNA-sequencing data from three female individuals with highly skewed XCI identified in the GTEx database-two newly reported and one previously described. Utilizing these rare non-mosaic XCI cases, the authors assess allelic expression patterns across 30 normal human tissues to classify the XCI status of 380 X-linked genes, including 198 not previously annotated. The study provides a broader and more comprehensive catalog of XCI escape, contributing valuable insights into sex-specific gene expression and the potential implications of X-linked variants in disease.
Strengths:
The primary strength of this work lies in its expanded scope: it doubles the number of tissues and significantly increases the number of X-linked genes with known XCI status compared to previous studies. By focusing on rare individuals with non-random XCI, the authors provide a unique opportunity to observe allelic expression and classify escape status with more confidence. Their findings that escape from XCI is relatively consistent across tissues (rather than tissue-specific) enhance the understanding of XCI mechanisms. The methodology is robust, the data are well-documented, and the supplementary resources are comprehensive. This study thus represents a valuable resource for the XCI field and a promising basis for future investigations.
Weaknesses:
Despite its strengths, the study is limited by its reliance on only three individuals, which restricts statistical power and generalizability. Concerns were raised regarding the comparability of XCI status across tissue types and cell lines, particularly given that previous classifications may have used cancer or immortalized cells. Additionally, more could be done to explore the genetic basis behind the observed skewed XCI, which might affect the conclusions about escape patterns. Finally, the authors are encouraged to expand their approach to additional RNA-seq datasets or single-cell analyses to validate their findings and potentially discover more individuals with skewed XCI, which would deepen understanding of this important biological phenomenon.