Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
- Senior EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
Reviewer #1 (Public review):
The origin recognition complex (ORC) is an essential loading factor for the replicative Mcm2-7 helicase complex. Despite ORC's critical role in DNA replication, there have been instances where the loss of specific ORC subunits has still seemingly supported DNA replication in cancer cells, endocycling hepatocytes, and Drosophila polyploid cells. Critically, all tested ORC subunits are essential for development and proliferation in normal cells. This presents a challenge, as conditional knockouts need to be generated, and a skeptic can always claim that there were limiting but sufficient ORC levels for helicase loading and replication in polyploid or transformed cells. That being said, the authors have consistently pushed the system to demonstrate replication in the absence or extreme depletion of ORC subunits.
Here, the authors generate conditional ORC2 mutants to counter a potential argument with prior conditional ORC1 mutants that Cdc6 may substitute for ORC1 function based on homology. They also generate a double ORC1 and ORC2 mutant, which is still capable of DNA replication in polyploid hepatocytes. While this manuscript provides significantly more support for the ability of select cells to replicate in the absence or near absence of select ORC subunits, it does not shed light on a potential mechanism.
The strengths of this manuscript are the mouse genetics and the generation of conditional alleles of ORC2 and the rigorous assessment of phenotypes resulting from limiting amounts of specific ORC subunits. It also builds on prior work with ORC1 to rule out Cdc6 complementing the loss of ORC1.
The weakness is that it is a very hard task to resolve the fundamental question of how much ORC is enough for replication in cancer cells or hepatocytes. Clearly, there is a marked reduction in specific ORC subunits that is sufficient to impact replication during development and in fibroblasts, but the devil's advocate can always claim minimal levels of ORC remaining in these specialized cells.
The significance of the work is that the authors keep improving their conditional alleles (and combining them), thus making it harder and harder (but not impossible) to invoke limiting but sufficient levels of ORC. This work lays the foundation for future functional screens to identify other factors that may modulate the response to the loss of ORC subunits.
This work will be of interest to the DNA replication, polyploidy, and genome stability communities.
Reviewer #2 (Public review):
This manuscript proposes that primary hepatocytes can replicate their DNA without the six-subunit ORC. This follows previous studies that examined mice that did not express ORC1 in the liver. In this study, the authors suppressed expression of ORC2 or ORC1 plus ORC2 in the liver.
Comments:
(1) I find the conclusion of the authors somewhat hard to accept. Biochemically, ORC without the ORC1 or ORC2 subunits cannot load the MCM helicase on DNA. The question arises whether the deletion in the ORC1 and ORC2 genes by Cre is not very tight, allowing some cells to replicate their DNA and allow the liver to develop, or whether the replication of DNA proceeds via non-canonical mechanisms, such as break-induced replication. The increase in the number of polyploid cells in the mice expressing Cre supports the first mechanism, because it is consistent with few cells retaining the capacity to replicate their DNA, at least for some time during development.
(2) Fig 1H shows that 5 days post infection, there is no visible expression of ORC2 in MEFs with the ORC2 flox allele. However, at 15 days post infection, some ORC2 is visible. The authors suggest that a small number of cells that retained expression of ORC2 were selected over the cells not expressing ORC2. Could a similar scenario also happen in vivo?
(3) Figs 2E-G shows decreased body weight, decreased liver weight and decreased liver to body weight in mice with recombination of the ORC2 flox allele. This means that DNA replication is compromised in the ALB-ORC2f/f mice.
(4) Figs 2I-K do not report the number of hepatocytes, but the percent of hepatocytes with different nuclear sizes. I suspect that the number of hepatocytes is lower in the ALB-ORC2f/f mice than in the ORC2f/f mice. Can the authors report the actual numbers?
(5) Figs 3B-G do not report the number of nuclei, but percentages, which are plotted separately for the ORC2-f/f and ALB-ORC2-f/f mice. Can the authors report the actual numbers?
(6) Fig 5 shows the response of ORC2f/f and ALB-ORC2f/f mice after partial hepatectomy. The percent of EdU+ nuclei in the ORC2-f/f (aka ALB-CRE-/-) mice in Fig 5H seems low. Based on other publications in the field it should be about 20-30%. Why is it so low here? The very low nuclear density in the ALB-ORC2-f/f mice (Fig 5F) and the large nuclei (Fig 5I) could indicate that cells fire too few origins, proceed through S phase very slowly and fail to divide.
(7) Fig 6F shows that ALB-ORC1f/f-ORC2f/f mice have very severe phenotypes in terms of body weight and liver weight (about on third of wild-type!!). Fig 6H and 6I, the actual numbers should be presented, not percentages. The fact that there are EYFP negative cells, implies that CRE was not expressed in all hepatocytes.
(8) Comparing the EdU+ cells in Fig 7G versus 5G shows very different number of EdU+ cells in the control animals. This means that one of these images is not representative. The higher fraction of EdU+ cells in the double-knockout could mean that the hepatocytes in the double-knockout take longer to complete DNA replication than the control hepatocytes. The control hepatocytes may have already completed DNA replication, which can explain why the fraction of EdU+ cells is so low in the controls. The authors may need to study mice at earlier time points after partial hepatectomy, i.e. sacrifice the mice at 30-32 hours, instead of 40-52 hours.
(9) Regarding the calculation of the number of cell divisions during development: the authors assume that all the hepatocytes in the adult liver are derived from hepatoblasts that express Alb. Is it possible to exclude the possibility that pre-hepatoblast cells that do not express Alb give rise to hepatocytes? For example the cells that give rise to hepatoblasts may proliferate more times than normal giving rise to a higher number of hepatoblasts than in wild-type mice.
(10) My interpretation of the data is that not all hepatocytes have the ORC1 and ORC2 genes deleted (eg EYFP-negative cells) and that these cells allow some proliferation in the livers of these mice.
Reviewer #3 (Public review):
Summary:
The authors address the role of ORC in DNA replication and that this protein complex is not essential for DNA replication in hepatocytes. They provide evidence that ORC subunit levels are substantially reduced in cells that have been induced to delete multiple exons of the corresponding ORC gene(s) in hepatocytes. They evaluate replication both in purified isolated hepatocytes and in mice after hepatectomy. In both cases, there is clear evidence that DNA replication does not decrease at a level that corresponds with the decrease in detectable ORC subunit and that endoreduplication is the primary type of replication observed. It remains possible that small amounts of residual ORC are responsible for the replication observed, although the authors provide arguments against this possibility. The mechanisms responsible for DNA replication in the absence of ORC are not examined.
Strengths:
The authors clearly show that there are dramatic reductions in the amount of the targeted ORC subunits in the cells that have been targeted for deletion. They also provide clear evidence that there is replication in a subset of these cells and that it is likely due to endoreduplication. Although there is no replication in MEFs derived from cells with the deletion, there is clearly DNA replication occurring in hepatocytes (both isolated in culture and in the context of the liver). Interestingly, the cells undergoing replication exhibit enlarged cell sizes and elevated ploidy indicating endoreduplication of the genome. These findings raise the interesting possibility that endoreduplication does not require ORC while normal replication does.
Weaknesses:
There are two significant weaknesses in this manuscript. The first is that although there is clearly robust reduction of the targeted ORC subunit, the authors cannot confirm that it is deleted in all cells. For example, the analysis in Fig. 4B would suggest that a substantial number of cells have not lost the targeted region of ORC2. Although the western blots show stronger effects, this type of analysis is notorious for non-linear response curves and no standards are provided. The second weakness is that there is no evaluation of the molecular nature of the replication observed. Are there changes in the amount of location of Mcm2-7 loading that is usually mediated by ORC? Does an associated change in Mcm2-7 loading lead to the endoreduplication observed? After numerous papers from this lab and others claiming that ORC is not required for eukaryotic DNA replication in a subset of cells, we still have no information about an alternative pathway that could explain this observation.
The authors frequently use the presence of a Cre-dependent eYFP expression as evidence that the ORC1 or ORC2 genes have been deleted. Although likely the best visual marker for this, it is not demonstrated that the presence of eYFP ensures that ORC2 has been targeted by Cre. For example, based on the data in Fig. 4B, there seems to be a substantial percentage of ORC2 genes that have not been targeted while the authors report that 100% of the cells express eYFP.