Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnna PanchenkoQueen's University, Kingston, Canada
- Senior EditorMerritt MadukeStanford University, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
Ngo et. al use several computational methods to determine and characterize structures defining the three major states sampled by the human voltage-gated potassium channel hERG: the open, closed, and inactivated state. Specifically, they use AlphaFold and Rosetta to generate conformations that likely represent key features of the open, closed, and inactivated states of this channel. Molecular dynamics simulations confirm that ion conduction for structure models of the open but not the inactivated state. Moreover, drug docking in silico experiments show differential binding of drugs to the conformation of the three states; the inactivated one being preferentially bound by many of them. Docking results are then combined with a Markov model to get state-weighted binding free energies that are compared with experimentally measured ones.
Strengths:
The study uses state-of-the art modeling methods to provide detailed insights into the structure-function relationship of an important human potassium channel. AlphaFold modeling, MD simulations, and Markov modeling are nicely combined to investigate the impact of structural changes in the hERG channel on potassium conduction and drug binding.
Weaknesses:
(1) The selection of inactivated conformations based on AlphaFold modeling seems a bit biased. The authors base their selection of the "most likely" inactivated conformation on the expected flipping of V625 and the constriction at G626 carbonyls. This follows a bit of the "Streetlight effect". It would be better to have selection criteria that are independent of what they expect to find for the inactivated state conformations. Using cues that favour sampling/modeling of the inactivated conformation, such as the deactivated conformation of the VSD used in the modeling of the closed state, would be more convincing. There may be other conformations that are more accurately representing the inactivated state. I see no objective criteria that justify the non-consideration of conformations from cluster 3 of the inactivated state modeling. I am not sure whether pLDDT is a good selection criterion. It reports on structural confidence, but that may not relate to functional relevance.
(2) The comparison of predicted and experimentally measured binding affinities lacks an appropriate control. Using binding data from open-state conformations only is not the best control. A much better control is the use of alternative structures predicted by AlphaFold for each state (e.g. from the outlier clusters or not considered clusters) in the docking and energy calculations. Using these docking results in the calculations would reveal whether the initially selected conformations (e.g. from cluster 2 for the inactivated state) are truly doing a better job in predicting binding affinities. Such a control would strengthen the overall findings significantly.
(3) Figures where multiple datapoints are compared across states generally lack assessment of the statistical significance of observed trends (e,g. Figure 3d).
(4) Figure 3 and Figures S1-S4 compare structural differences between states. However, these differences are inferred from the initial models. The collection of conformations generated via the MD runs allow for much more robust comparisons of structural differences.
Reviewer #2 (Public review):
Summary:
Ngo et al. use AlphaFold2 and Rosetta to model closed, open, and inactive states of the human ion channel hERG. Subsequent MD simulations and comparisons with experiments support the plausibility of their models.
Strengths:
This is thorough work studied from many different angles. It provides a self-consistent picture of how conformational changes in hERG may affect its function and binding to different targets.
Weaknesses:
Though this work claims the methodologies can be generalized to other systems, it is not obvious how. Many modeling choices seem arbitrary and also seem to have required extensive expert knowledge of the system. This limits the applicability of the modeling strategy.
Reviewer #3 (Public review):
Summary:
The authors use Alphafold2, Rosetta, and Molecular Dynamics to model structures of the hERG K channel in open, inactive, and closed states. Experimental CryoEM data for open hERG (Wang and Mackinnon 2017), and closed EAG (Mandala and Mackinnon, 2002) were used as the main templates for channel models presented here. Given the importance of hERG as a safety pharmacology target, the identification of a robust simulation method to assess drug block is an important addition to the field.
Strengths
The key findings here are new inactivated and closed hERG channel conformations and hERG channel conformations with drugs docked in the inner vestibule below the selectivity filter. Amino acid pathways and interaction networks for different states are also presented.
The inactive state and drug block models are carefully correlated with experimental data for the inactivated state of hERG (Lau et al, 2024) and with experimental free energy data for drug binding and have overall good agreement.
It is remarkable that using cytoplasmic domain structures of hERG as a starting point revealed inactivation state structures in the hERG selectivity filter in Figures 2,3.
Weaknesses
Figure 6, if each data point is for a different drug, then perhaps identify each point.
The PAS domain was not included in the models as stated in Methods page 14 but the PAS does appear in some of the templates used as starting points for models in Figure 1 a,b,c. Perhaps mentioning that the PAS was not included in some (all?) of the final models should be moved into the main text and discussed.
The drug block of 1b channels (which do not contain PAS) has been reported to be slightly different than that for 1a channels (which contain PAS) and for 1a/1b channels (see London et al., 1997; https://doi.org/10.1161/01.RES.81.5.870 and Abi-Gerges et. al., 2011; DOI: 10.1111/j.1476-5381.2011.01378.x) and this should be discussed since the models presented here appear to be performed in the absence of the PAS.
It also appears that the N-linker region (between PAS and the S1) and distal C region of hERG (post CNBHD-COOH) are not included in models, please state this if correct, and discuss.