Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public review):
Summary:
The manuscript "Lifestyles shape genome size and gene content in fungal pathogens" by Fijarczyk et al. presents a comprehensive analyses of a large dataset of fungal genomes to investigate what genomic features correlate with pathogenicity and insect associations. The authors focus on a single class of fungi, due to the diversity of life styles and availability of genomes. They analyze a set of 12 genomic features for correlations with either pathogenicity or insect association and find that, contrary to previous assertions, repeat content does not associate with pathogenicity. They discover that the number of protein coding genes, including total size of non-repetitive DNA does correlate with pathogenicity. However, unique features are associated to insect associations. This work represents an important contribution to the attempts to understand what features of genomic architecture impact the evolution of pathogenicity in fungi.
Strengths:
The statistical methods appear to be properly employed and analyses thoroughly conducted. The size of the dataset is impressive and likely makes the conclusions robust. The manuscript is well written and the information, while dense, is generally presented in a clear manner.
Reviewer #2 (Public review):
Summary:
In this paper, the authors report on the genomic correlates of the transition to the pathogenic lifestyle in Sordariomycetes. The pathogenic lifestyle was found to be better explained by the number of genes, and in particular effectors and tRNAs, but this was modulated by the type of interacting host (insect or not insect) and the ability to be vectored by insects.
Strengths:
The main strengths of this study lie in (i) the size of the dataset, and the potentially high number of lifestyle transitions in Sordariomycetes, (ii) the quality of the analyses and the quality of the presentation of the results, (iii) the importance of the authors' findings.
Weaknesses:
The weakness is a common issue in most comparative genomics studies in fungi, but it remains important and valid to highlight it. Defining lifestyles is complex because many fungi go through different lifestyles during their life cycles (for instance, symbiotic phases interspersed with saprotrophic phases). In many fungi, the lifestyle referenced in the literature is merely the sampling substrate (such as wood or dung), which does not necessarily mean that this substrate is a key part of the life cycle. The authors discuss this issue, but they do not eliminate the underlying uncertainties.
[Editors' note: this version was assessed by the editors, without involving the reviewers again.]