Cylicins are a structural component of the sperm calyx being indispensable for male fertility in mice and human

  1. Institute of Pathology, Department of Developmental Pathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
  2. Bonn Technology Campus, Core Facility “Gene-Editing”, Medical Faculty, University of Bonn, 53127 Bonn, Germany
  3. Life and Medical Sciences Institute, Department for Immunology and Environment, University of Bonn, 53115 Bonn, Germany
  4. Institute of Reproductive Genetics, University of Münster, Münster, Germany
  5. Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
  6. Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
  7. Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany

Editors

  • Reviewing Editor
    Jean-Ju Chung
    Yale University, New Haven, United States of America
  • Senior Editor
    Diane Harper
    University of Michiganâ€Ann Arbor", Ann Arbor, United States of America

Reviewer #1 (Public Review):

Mice and humans have two Cylicin genes (X-linked Cylicin 1 and the autosomal Cylicin 2) that encode cytoskeletal proteins. Cylicins are localized in the acrosomal region of round spermatids, yet they resemble a calyx component within the perinuclear theca of mature sperm nuclei. The function of Cylicins during this developmental stage of spermiogenesis (tail formation and head elongation/shaping) was not known. In this study, using CRISPR/Cas genome editing, the authors generated Cylc1-and Cylc2-knockout mouse lines to study the loss-of-function of each Cylicin or all together.

The major strengths of the study are the rigorous and comparative phenotypic analyses of all the combinatorial genotypes from the cross between the two mouse lines (Cylc1-/y, Cylc2-/-, Cylc1-/y Cylc2+/- and Cylc1-/y Cylc2-/-) at the levels of male fertility, cellular, and subcellular levels to support the conclusion of the study. While spermatogenesis appeared undisturbed, with germ cells of all types detected in the testis, low sperm counts in epididymis were observed. Mice were subfertile or infertile in a dose-dependent manner where fewer functional alleles had more severe phenotypes; the loss of Cylc2 was less tolerated than the loss of Cylc1. Thus, loss of Cylc1, and to an even greater extent, loss of Cylc2, leads to sperm structure anomalies and decrease sperm motility. Particularly, the sperm head and sperm head-neck region are affected, with calyx not forming in the absence of Cylicins, the acrosomal region being attached more loosely, and the sperm head itself appearing structurally rounder and shorter. Furthermore, manchette, which disassembles during spermiogenesis, persists in mature sperm of mice missing Cylc2. It is interesting that the study identifies a human male that has mutations in both CYLC1 and CYLC2 genes, and suffers from infertility, with similar motility and sperm structure defects compared to the mouse models. CYLC1 in the sperm from the infertile patient sperm is absent, providing evidence that in both rodents and primates, Cylicins are essential for male fertility.

The major weakness of the study is the less robust or absent of statistical analyses determining the statistical significance of some of the morphological phenotypes observed (e.g., the roundness/shortening of sperm head). Evolutionary analysis of two genes-while interesting- is less congruent with the other parts of the study and disrupts the overall flow of the functional studies. The authors show that the reason for the loss of Cylc2 being more severe is due to the higher conservation of Cylc2 compared to Cylc1 in rodents and primates, however, the conservation of these genes in other species is not discussed.

Overall, the work highlights the relevance and importance of Cylicins in male infertility and advances our understanding of perinuclear theca formation during spermiogenesis.

Reviewer #2 (Public Review):

The work presented in this manuscript focuses on the role of Cylicins in spermiogenesis and the consequences of their absence on infertility. The manuscript is presented in two parts: the first part studies the absence of Cylicins from KO mouse models and shows in mice that both isoforms of Cylicins are necessary for normal spermiogenesis. The evaluation of double heterozygotes is particularly useful for the second part which looks at the presence of mutations in these genes in a cohort of infertile men. A patient with two hemizygous/heterozygous mutations in the CYLC1 and 2 genes, respectively, was identified for the first time and the results obtained with the KO models support the hypothesis of the pathogenicity of the mutations.

In general, the experiments are perfectly performed and the results are clear. Numerous techniques in the state of the art in male reproduction are used to obtain high-quality phenotyping of the mouse models.

The discovery of two concomitant mutations in an infertile patient is very interesting and the work carried out on mice allows supporting that an absence of CYLC1 and a heterozygous mutation of CYLC2 could lead to a phenotype of complete infertility. However, as the mutation on CYLC2 is not identified as pathogenic, the pathogenicity of this mutation remains in question (the authors note this point in the discussion). It would be interesting to see if the mutated amino acid is conserved between different species. In mice, the authors have shown the importance of these proteins on the morphology of the acrosome. What about in humans?

Reviewer #3 (Public Review):

The authors tried to study the role of the cylicin gene in sperm formation and male fertility. They used the Crispr/cas 9 to knockout two mouse cylicin genes, cylicin 1 and cylicin 2. They used comprehensive methods to phenotype the mouse models and discovered that the two genes, particularly cylicin 2 are essential for sperm calyx formation. They further compared the evolution of the two genes. Finally, they identified mutations of the genes in a patient. The major strengths are the high quality of data presented, and the conclusion is supported by their findings from the animal models and patients. The major weakness is that the study is descriptive: no molecular mechanism studies were conducted or proposed, limiting its impact on the field.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation