Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYunlei YangAlbert Einstein College of Medicine, New York, United States of America
- Senior EditorMone ZaidiIcahn School of Medicine at Mount Sinai, New York, United States of America
Reviewer #1 (Public Review):
This well written and designed study by Broca-Brisson et al describes the generation of a new in vitro model for creatine transporter deficiency (CTD), making use of human brain organoid cultures derived from CTD patients. This new model will certainly prove itself very useful to better understand this genetic disease essentially affecting CNS. As CTD has no satisfactory treatment so far (despite more than 20 years of research), this new model will also be very useful to design and develop new treatments.
In particular, through the use of immunohistochemistry, real time PCR, and proteomics combined with integrative bioinformatic and statistical analysis, authors provide very interesting new information on the brain pathways affected in CTD (e.g. neurogenesis with down-regulation of SOX2 and PAX6 but up-regulation of GSK3b; and proteins involved in autistic spectrum, epilepsies or intellectual disabilities).
Reviewer #2 (Public Review):
In their recent manuscript, Broca-Brisson et al. deliver a multidisciplinary approach to investigate creatine transporter deficiency (CTD) using human-derived brain organoids. The authors have provided a compelling CTD human brain organoid model using induced pluripotent stem cells (iPSCs) derived from individuals with CTD. This model shows distinct differences in creatine uptake between organoids originating from CTD patients and their healthy counterparts. Furthermore, the researchers effectively restored creatine uptake by reintroducing the wild-type CRT in the iPSCs.
The team used advanced molecular biology techniques and sophisticated mass spectrometry to identify changes in protein regulation within these CTD brain organoids. They propose an intriguing theory linking reduced creatine uptake to abnormalities in the GSK3β kinase pathway and mitochondrial function, which might underlie intellectual disability seen in CTD patients.
This study is well-structured and easy to follow, with clear and concise explanations of the experiments. The authors present an important idea: a dysfunction in just one protein transporter (CRT) can cause significant biochemical changes in the brain. Their findings are well-presented and backed by high-quality figures and comprehensive data analysis.
There are only minor suggestions for improvement in this manuscript. The authors strongly link creatine uptake, the GSK3β pathway, and intellectual disability. Enhancing this claim with data on phosphorylation differences between organoids derived from healthy individuals and those from CTD patients could solidify this foundation and facilitate a more holistic understanding of the disease. In addition, the in vitro model based on organoids might be closer than other experimental setups; however, proving that those differences are also present in vivo would greatly benefit the story.
There is also some uncertainty around the rescue experiment using the exogenous SLC6A8 gene. Could the difference in creatine uptake between the rescue iPSCs and the healthy control be due to CRT overexpression? Higher levels of the transporter may explain the elevated levels of intracellular creatine. Thus, a comparison using Western blotting experiments could be a valuable addition to evaluating the expression levels of this protein.
Overall, this study provides valuable insights into CTD and potential therapeutic targets. It enriches our understanding of CTD and opens up new avenues for future research in this field.