Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLeon IslasUniversidad Nacional Autónoma de México, México City, Mexico
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public Review):
This manuscript by He et al. explores the molecular basis of the different stinging behaviors of two related anemones. The freshwater Nematostella which only stings when a food stimulus is presented with mechanical stimulation and the saltwater Exaiptasia which stings in response to mechanical stimuli. The authors had previously shown that Nematostella stinging is calcium-dependent and mediated by a voltage-gated calcium channel (VGCC) with very pronounced voltage-dependent inactivation, which gets removed upon hyperpolarization produced by taste receptors.
In this manuscript, they show that Exaiptacia and Nematostella differing stinging behavior is near optimal, according to their ecological niche, and conforms to predictions from a Markov decision model.
It is also shown that Exaiptacia stinging is also calcium-dependent, but the calcium channel responsible is much less inactivated at resting potential and can readily induce nematocyte discharge only in the presence of mechanical stimulation. To this end, the authors record calcium currents from Exaipacia nematocysts and discover that the VGCCs in this anemone are not strongly inactivated and thus are easily activated by mechanical stimuli-induced depolarization accounting for the different stinging behavior between species. The authors further explore the role of the auxiliary beta subunit in the modulation of VGCC inactivation and show that different n-terminal splice variants in Exaiptacia produce strong and weak voltage-dependent inactivation.
The manuscript is clear and well-written and the conclusions are in general supported by the experiments and analysis. The findings are very relevant to increase our understanding of the molecular basis of non-neural behavior and its evolutionary basis. This manuscript should be of general interest to biologists as well as to more specialized fields such as ion channel biophysics and physiology.
Reviewer #2 (Public Review):
This manuscript links the distinctive stinging behavior of sea anemones in different ecological niches to varying inactivation properties of voltage-gated calcium channels that are conferred by the identity of auxiliary Cavbeta subunits. Previous work from the Bellono lab established that the burrowing anemone, Nematostella vectensis, expresses a CaV channel that is strongly inactivated at rest which requires a simultaneous delivery of prey extract and touch to elicit a stinging response, reflecting a precise stinging control adapted for predation. They show here that by contrast, the anemone Exaiptasia diaphana which inhabits exposed environments, indiscriminately stings for defense even in the absence of prey chemicals, and that this is enabled by the expression of a CaVbeta splice variant that confers weak inactivation. They further use the heterologous expression of CaV channels with wild type and chimeric anemone Cavbeta subunits to infer that the variable N-termini are important determinants of Cav channel inactivation properties.
Reviewer #3 (Public Review):
Summary:
The present article attempts to answer both the ultimate question of why different stinging behaviours have evolved in Cnidiarians with different ecological niches and shed light on the proximate question of which electro-physiological mechanisms underlie these distinct behaviours.
Account of major methods and results:
In the first part of the paper, the authors try to answer the ultimate question of why distinct dependencies of the sting response on internal starvation levels have evolved. The premise of the article that Exaiptasia's nematocyte discharge is independent of the presence of prey (Artemia nauplii) as compared to Nematostella's significant dependence of the discharge on the presence of actual prey, is shown to be a robust phenomenon justified by the data in Figure 1.
The hypothesis that defensive vs. predatory stinging leads to different nematocyte discharge behaviours is analysed in mathematical models based on the suitable framework of optimal control/decision theory. By assuming functional relations between the:
- cost of a full nematocyte discharge and the starvation level.
- probability of successful predation/avoidance on the discharge level.
- desirability/reward of the reached nutritional state.
Based on these assumptions of environmental and internal influences, the optimal choice of attack intensity is calculated using Bellman's equation for this problem. The model predictions are validated using counted nematocytes on a coverslip. The scaling of normalised nematocyte discharge numbers with scaled starvation time is qualitatively comparable to what is predicted from the models. The abundance of nematocytes in the tentacles was, on the other hand, independent of the starvation state of the animals.
Next, the authors turn to investigate the proximate cause of the differential stinging behaviour. The authors have previously reported convincing evidence that a strongly inactivating Cav2.1 channel ortholog (nCav) is used by Nematostella to prevent stinging in the absence of prey (Weir et al. 2020). This inactivation is released by hyperpolarising sensory inputs signalling the presence of prey. In this article, it is clearly shown by blocking respective currents that Exaiptasia, too, relies on extracellular Ca2+ influx to initiate stinging. Patch clamp data of the involved currents is provided in support. However, the authors find that in addition to the nCav with a low-inactivation threshold, Exaiptasia has a splice variant with a higher inactivation threshold expressed (Figure 3D).
The authors hypothesise that it is this high-threshold nCav channel population that amplifies any voltage depolarisation to release a sting irrespective of the presence of prey signals. They found that the β subunit that is responsible for Nematostella's unusually low inactivation threshold exists in Exaiptasia as two alternative splice isoforms. These N-terminus variants also showed the greatest variation in a phylogenetic comparison (Figure 5), rendering it a candidate target for mutations causing variation in stinging responses.
Appraisal of methodology in support of the conclusions:
The authors base their inference on a normative model that yields quantitative predictions which is an exciting and challenging approach. The authors take care in stating the model assumptions as well as showing that the data indeed does not contradict their model predictions. The interesting comparative nature of the modelling part of the study is complicated by slightly different cost assumptions for the two scenarios. Hence, Figure 2 needs to be carefully digested by readers.
It would be even more prudent to analyse the same set of cost-of-discharge vs. starvation scenarios for both species. Specifically, for Nematostella the complete cost-of-discharge vs starvation-state curves as for Exaiptasia (Figure 2E, example 2-4) could be used. It is likely that the differential effect size of Nematostella and Exaiptasia behaviour is the strongest if only the flat cost-of-discharge vs starvation is used (Figure 2A) for Nematostella. But as a worst-case comparison the other curves, where the cost to the animal scales with starvation would be a good comparison. This could help the reader to understand when the different prediction of Nematostella's behaviour breaks down. In addition, this minor change could shed light on broader topics like common trade-offs in pursuit predation.
The qualitatively similar scaling of the model-derived relation between starvation and sting intensity with the counted nematocytes for different feeding pauses is evidence that feeding has indeed been optimised for the two distinct ecological niches.
To prove that Exaiptasia uses a similar Ca2+ channel ortholog as well as a different splice variant, the authors employed both clean electrophysiological characterisation (Figure 3) as well as transcriptomics data (Figure 4S1).
To strengthen the authors' hypothesis that variation in the N-termini leads to changes in Ca2+ channel inactivation and hence altered stinging, the response sequence variability of 6 Cnidaria was analysed.
Additional context:
Although, the present article focuses on nematocytes alone, currently, there has been a refocus in neurobiology on the nervous systems of more basal metazoans, which received much attention already in the works of Romanes (1885). In part, this is driven by the goal to understand the early evolution of nervous systems. Cnidarians and Ctenophors are exciting model organisms in this venture. This will hopefully be accompanied by more comparative studies like the present one. Some of the recent literature also uses computational models to understand mechanisms of motor behaviour using full-body simulations (Pallasdies et al. 2019; Wang et al. 2023), which can be thought of as complementary to the normative modelling provided by the authors.
Comparative studies of recent Cnidarians, such as the present article, can shed light on speculative ideas on the origin of nervous systems (Jékely, Keijzer, and Godfrey-Smith 2015). During a time (the Ediacarium/Cambrium transition) that has seen the genesis of complex trophic foodwebs with preditor-prey interaction, symbioses, but also an increase of body sizes and shapes, multiple ultimate causes can be envisioned that drove the increase in behavioural complexity. The authors show that not all of it needs to be implemented in dedicated nerve cells.
References:
Jékely, Gáspár, Fred Keijzer, and Peter Godfrey-Smith. 2015. "An Option Space for Early Neural Evolution." Philosophical Transactions of the Royal Society B: Biological Sciences 370 (December): 20150181. https://doi.org/10.1098/rstb.2015.0181.
Pallasdies, Fabian, Sven Goedeke, Wilhelm Braun, and Raoul-Martin Memmesheimer. 2019. "From Single Neurons to Behavior in the Jellyfish Aurelia Aurita." eLife 8 (December). https://doi.org/10.7554/elife.50084.
Romanes, G. J. 1885. Jelly-Fish, Star-Fish and Sea-Urchins: Being a Research on Primitive Nervous Systems. Appleton.
Wang, Hengji, Joshua Swore, Shashank Sharma, John R. Szymanski, Rafael Yuste, Thomas L. Daniel, Michael Regnier, Martha M. Bosma, and Adrienne L. Fairhall. 2023. "A Complete Biomechanical Model of hydra Contractile Behaviors, from Neural Drive to Muscle to Movement." Proceedings of the National Academy of Sciences 120 (March). https://doi.org/10.1073/pnas.2210439120.
Weir, Keiko, Christophe Dupre, Lena van Giesen, Amy S-Y Lee, and Nicholas W Bellono. 2020. "A Molecular Filter for the Cnidarian Stinging Response." eLife 9 (May). https://doi.org/10.7554/elife.57578.