Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAlejandro San MartínCentro de Estudios Científicos and Universidad San Sebastián, Valdivia, Chile
- Senior EditorBenoit KornmannUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public Review):
In this manuscript, Davidsen and coworkers describe the development of a novel aspartate biosensor jAspSNFR3. This collaborative work supports and complements what was reported in a recent preprint by Hellweg et al., (bioRxiv; doi: 10.1101/2023.05.04.537313). In both studies, the newly engineered aspartate sensor was developed from the same glutamate biosensor previously developed by the authors of this manuscript. This coincidence is not casual but is the result of the need to find tools capable of measuring aspartate levels in vivo. Therefore, it is undoubtedly a relevant and timely work carried out by groups experienced in aspartate metabolism and in the generation of metabolite biosensors.
Reviewer #2 (Public Review):
In this work the IGluSnFR3 sensor, recently developed by Marvin et al (2023) is mutated position S72, which was previously reported to switch the specificity from Glu to Asp. They made 3 mutations at this position, selected a S72P mutant, then made a second mutation at S27 to generate an Asp-specific version of the sensor. This was then characterized thoroughly and used on some test experiments, where it was shown to detect and allow visualization of aspartate concentration changes over time. It is an incremental advance on the iGluSnFR3 study, where 2 predictable mutations are used to generate a sensor that works on a close analog of Glu, Asp. It is shown to have utility and will be useful in the field of Asp-mediated biological effects.
Reviewer #3 (Public Review):
In this manuscript, Davidsen and collaborators introduce jAspSnFR3, a new version of aspartate biosensor derived from iGluSnFR3, that allows monitoring in real-time aspartate levels in cultured cells. A selective amino acids substitution was applied in a key region of the template to switch its specificity from glutamate to aspartate. The jAspSnFR3 does not respond to other tested metabolites and performs well, is not toxic for cultured cells, and is not affected by temperature ensuring the possibility of using this tool in tissues physiologically more relevant. The high affinity for aspartate (KD=50 uM) allowed the authors to measure fluctuations of this amino acid in the physiological range. Different strategies were used to bring aspartate to the minimal level. Finally, the authors used jAspSnFR3 to estimate the intracellular aspartate concentration. One of the highlights of the manuscript was a treatment with asparagine during glutamine starvation. Although didn't corroborate the essentiality of asparagine in glutamine depletion, the measurement of aspartate during this supplementation is a glimpse of how useful this sensor can be.