Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJungsan SohnJohns Hopkins University School of Medicine, Baltimore, United States of America
- Senior EditorRichard WhiteUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public Review):
Summary: TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) is a potent inducer of apoptosis in tumor cells. Initially, this finding raised high expectations on the possibility to induce tumor-specific apoptosis by activation of TRAIL-receptors DR4 and DR5. However, attempted TRAIL-based anti-tumor therapies failed so far, and several tumor types were found to resist TRAIL-induced apoptosis. Yin Luo and colleagues provide an explanation for these observations with the potential to provide a new important biomarker for future TRAIL-based anti-tumor therapies and to reduce resistance. The authors reveal that sensitivity towards TRAIL correlates inversely with heparan sulfate (HS) expression levels at the surface of tumor cells, suggesting that HS functions as a tumor suppressor. These observations are explained by two two mechanisms: First, HS induces the assembly of higher-order oligomers from soluble TRAIL trimers, and second, TRAIL and HS form a ternary complex with DR5 to promote its cellular internalization. Therefore, this timely and important work provides a better mechanistic understanding of TRAIL-induced apoptosis and TRAIL resistance of some tumor types, with the potential to improve therapy.
Strengths: The major novel finding of this study is that extracellular heparan sulfate (HS) acts as a positive regulator of TRAIL-induced tumor cell apoptosis, and that HS expression of different tumor cell lines correlates with their capacity to induce cell death. The authors first show by affinity chromatography and SPR that murine and human TRAIL bind strongly to heparin (heparin is a highly sulfated, and thus strongly negatively charged form of HS that is derived from connective tissue type mast cells), and identify three basic amino acids on the TRAIL N-terminus that are required for the interaction. Size exclusion chromatography (SEC) and multiangle light scattering (MALS) revealed that TRAIL exists as a trimer that requires a minimum heparin length of 8 sugar residues for binding, and small angle X-ray scattering (SAXS) showed that TRAIL interaction with longer oligosaccharides induced higher order multimerization of TRAIL. Consistent with these biochemical and biophysical analyses, HS on tumor cells contributes to TRAIL-binding to their cell surface and subsequent apoptosis. The study also describes domain swapping observed by TRAIL trimer crystallization, and demonstrates different degrees of HS core protein and DR receptor expression in different tumor cell types. These findings are well supported and together with the advanced and established methodology used by the authors are the strengths of this paper. The paper will be of great interest to medical biologists studying TRAIL-resistance of tumors, to biologists interested in DR4 and DR5 receptor function and the effects of receptor internalization, and to glycobiologists aiming to understand the multiple important roles that HS plays in development and disease. The authors also raise the important point (and support it well) that routine heparin treatment of cancer patients potentially interferes with TRAIL-based therapies, providing one possible reason for their failure.
Weaknesses: Despite the importance and the clear strengths of the paper, some of its aspects could have been developed further. First, the authors findings that HS at the tumor surface promotes TRAIL binding, and that HS promotes TRAIL-induced breast cancer and myeloma cell apoptosis, are based on pre-treatment of cells with heparinase to remove surface HS prior to TRAIL-treatment, or on the addition of soluble heparin to compete with cell-surface HS for TRAIL binding. A more direct way to establish such new HS function could have been the genetic manipulation of cancer cells to overexpress HS or to express less or undersulfated HS. Changed susceptibility of these cells to TRAIL-induced apoptosis would have greatly underlined the physiological significance of the authors findings. Second, the mechanistics of TRAIL-induced, HS-modulated tumor cell apoptosis could have been more clearly defined. For example, the authors demonstrate convincingly that cell surface HS is essential for TRAIL-induced apoptosis in MDA-MB-453 breast cancer cells, and show that a tumor cell line (IM-9 cells) that expresses HS and the core protein to which HS is attached to only limited degrees is the most resistant to TRAIL-induced apoptosis. However, Indeed, the authors later also report that cell surface HS promotes TRAIL-induced myeloma cell apoptosis regardless of the sensitivity levels, and that other factors - the degree of TRAIL multimerization or DR4/DR5 receptor internalization - are also important. Therefore, HS levels do not play a sole determining role in TRAIL-induced apoptosis. Along the same line, the authors show that RPMI-8226 cell-surface HS promotes DR5 internalization despite the absence of direct DR5/heparin interactions. This suggests that HS at the cell surface may also affect apoptosis indirectly. To test this hypothesis, it would have been worthwhile to include the binding characteristics and HS-dependent internalization of DR4 into the study.
Reviewer #2 (Public Review):
Summary:
In the manuscript by Luo et al, the authors investigated the nature and function of TRAIL-HS binding for the regulation of TRAIL-mediated apoptosis in cancer cells. The authors discovered that TRAIL binds to 12mer HS and identified the amino acid residues critical for the binding. The authors further nicely showed that 12mer HS binds to TRAIL homotrimer and larger HS can further promote the formation of larger TRAIL oligomers. Structural analyses were conducted to characterize the binding of TRAIL/HS complexes. At functional level, the authors demonstrated that HS promotes the cell surface binding of TRAIL to enhance TRAIL-mediated apoptosis in a variety of cancer cells. Moreover, the ability of TRAIL to induce apoptosis is correlated with cell surface HS level. Lastly, the authors showed that HS forms complex with TRAIL and its receptor DR5 and promotes DR5 internalization.
Strengths:
Overall, this is a nicely executed study providing both mechanistic and functional insight for TRAIL-mediated apoptosis. It conducted detailed characterization on the direct binding between HS and TRAIL and provided solid evidence supporting the role of such interaction for the regulation of TRAIL-induced apoptosis. The experiments were well-designed with proper controls included. The data interpretation is accurate. The manuscript was clearly written and easy to follow by general readers.
Weaknesses:
There is no major weakness identified from this study. As the authors pointed out, the current relationship between cell surface HS level and sensitivity to TRAIL-mediated apoptosis is still correlative and will need further investigation in the future.